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CHAPTER I. INTRODUCTION AND PRELIMINARIES
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Section 1. Examples of Eigenvalue Problems
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In "this section we presentg%everal model eigenvalue problems
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arising in physics and engineering. Specifically,-we -will discuss-
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eigenfunctions. Some of the model problems we:discusschere will
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serve as illustrative examples in connection with the approximation
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methods considered;in Chapter III. We will attempt to provide a
clear understandiﬂg of the fundamental ideas, but will not present,
a detailed treatment. For a more complete discussion of the mate-
rial in this section w3>refer to Courant-Hilbert {1953].

A. One Dimensional Problems

The Longitudinal Vibration of an Elastic Bar

We are interested in studying the small, longitudinal vibra-
tions of a longitudinally loaded, elastically supported, elastic

bar with masses attached to its ends. The bar is shown in Figure

1.1,

ELASTIC SUPPORT ELASTIC SUPPORT
M MM -
M M M M 7 i
10 )
> = > —_— N
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N ™M™ ™M enp mass 3
END MASS LOAD ELASTIC SUPPORT \
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Figure 1.1. Elastic Bar. :';\"
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We now derive the governing differential equation and boundary

conditions for the problem. First we consider the static prob-

lem. Suppose

f(x), 0 < x < £, represents the external longitudinal load, with

positive f(x) denoting a force directed to the right,

u{x), 0 < x < ¢, denotes the displacement of the cross-section of

the bar originally at x, with positive u(x) denoting the

displacement to the right, so that the position of a point

‘1 originally at x is x + u(x),

: £(x), 0 < x < £, denotes the strain in the x~-direction, i.e., the

‘; relative change in the length of the fibers in the bar (¢ (x)

- will be positive if it describes extension),

?? o(x), 0 < x < ¢, denotes the normal stress in the cross-section
at x, 1i.e., the force per unit area exerted by the portion
of the bar to the right of x on the portion to the left of

?S (oc(x) will be positive if it describes tension),

A(x), 0 < x < £, denotes the area of the cross-section at x,

- E(x), 0 < x < £, denotes the modulus of elasticity of the bar at

o X,

te.

B F(x), 0 < x < £, denotes the internal force acting on the cross-

5& section at x, 1i.e., the force exerted by the portion of

; the bar to the right of =x on the portion to the left, with

': positive F(x) denoting a force directed to the right,

- o(x), 0 < x < £, denotes the load due to the (continuous) elastic

g support, which is assumed to be of the form

L

l p(x) = -c(x)u(x),

is where <c¢(x) > 0 is the spring constant of the support (the
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negative sign indicates that the force is directed opposite
to the displacement), and

m(x), 0 < x < £, denotes the specific mass at x, i.e., the mass
per unit volume at x.

The strain ¢(x) and the displacement u(x) are related by

£(x) = a;(x).

This relation is valid for small displacements, i.e., when [#£(x}!

« 1, The relation between stress and strain is described by the

sun T
‘lrl

¥

constitujitive law of the material. We are assuming the linear Eﬁj
N
relation given by Hooke's Law: ;:

1
N

g(x) = E(x)e(x).

o
RLNOAENY

Thus, since F(x) = o(x)A(X), we have

~v
P
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v
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F(x) = A(X)E(xX)e (%)

Ity ]
1

r
-'.

= A(x)E(x)%;(x).

S
S f e
LA 5 &

Now the equilibrium condition for the bar is

S(x) + £(x) + p(x) =0,

which, with the use of the relations discussed above, can also be

written as
d du
(1.1) —H§(A(X)E(x)3§(x)) + c(xX)u(x) = f(x), 0 < x < ¢,

This is the governing differential equation.

We consider the three most important types of boundary condi-

tions.

Dirichlet Type

(1.2a) u(0) = a,, u(¥) = a
1 2
4
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Here the displacements of the end points of the bar are given.

Neumann Type

b

(1.2b) -F(0) = —(AE%)(O) F(e) = (Azg—‘;)(z) = b

1’ 2
Here the forces at the ends of the bar are given. The different
signs at O and { are used to express the outer normal deriva-

tive at the ends of the bar.

Newton Type

(1.2¢) -(AESZ)(0) + 7,u(0) = ;. (AEGR) (&) + r,u(f) = ¢

1'

where 71,72 > 0

Here 75 is the spring constant of a spring attached to the bar at
X = £ and -72u(£) is the force exerted on the right end of the
bar by the spring. We are thus specifying the sum of the internal
force and the spring force on the right end of the bar. The con-
dition at x = 0 has a similar interpretation.

({1.1) together with one of (1.2a,b,c) determine the displace-

ment u(x) 1in the static case. We now turn to the dynamic case.

We assume the external load depends on the time t and is

represented by f(x,t) and suppose ai’bi'ci in the boundary con-

ditions depend on t : a = bi(t), c

= ai(t), b = ci(t), i=1,2.

i i i
We further suppose the bar is subject to a damping force repre-

sented by R. If u = u(x,t) is the displacement at time t,

then from Newton's 2"? law we have

(1.3)
2
aJ A A4ua
‘§§(A(X)E(X)5*(X.t)) + c(xXju(x,t) = £(X,t) - m(xX)A(x)—=(x,t) - R,
X dt2
0 < x <4, t > 0.
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We next give the boundary conditions in the dynamic case.
The Dirichlet conditions are nearly the same as in‘the static
case, while the Neumann and Newton conditions require modification
because of the forces exerted on the ends of the bar by the

attached masses.

Dirichlet Type

(1.4a) u(o,t) = al(t), u(f,t) = a2(t), t =20

Neumann Type

(-22%) (0.t) = -m.28(0, ) + b, (t)
ax’ ! I YO Ay 1
(1.4b)
2
du _ _.d7u N

where m1 and' m2 are the masses attached to the left and

right ends of the bar, respectively

Newton Type

2
(-AE2%) (0,t) + ».u(0,t) = - m.2%(0,t) + c.(t)
3x 1 1, .2 1
at
(1.4c¢)
Ju 62u
(AE-—)(€.,t) + . u(€,t) = - m —(¢,t) + c (), £t > O
ax 2 26t2 2

We remark that we can impose boundary conditions of different
types at the two ends. For example, we could impose a Newton type
condition at 0 and a Dirithet type at <£.

Finally in this (dynamic) case we need to impose initial

conditions. We specify the initial position and velocity:

u(x,0) = v, (x)
(1.95)
au .
Tt-(x,O) = tz(x)' 0 < X ¢
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Consider now eguations (1.3), with f = R = 0, and one of :‘;E
ﬂ~,r\.«'l
the conditions (1.4a,b,c), with a1 = 32 = b1 = b2 = c1 = c2 = 0. s
If we seek separated solutions of the form ;::':,:,'
P:J::r
o,
= ¢
u(x,t) v(x)w(t), NN
in which the spatial variable x and the temporal variable t RO
RSO
are separated, from (1.3) we find that T
u a dv a%w e
[Sz(A(R)m(X)m=(X)) + c(X)V(X)]wW(t) = ~m(xX)A(X)V(X)—5(t)
dx dx 2 P
dt "V‘ ]
.r:f::r
T o
2 .r,‘:f“':r
d dv - M(t) -
- a=(A(X)E(X) ==(X)) + c(x)v(x) 2
(1.6) —2% dx - at O<x<£ tro iy
) m(x)A(x)v(x) wit) ' ’ S NN,
A
‘-:::'.{:
Imposing the boundary conditions (1.4a,b,c) on u = vw we find j-’_-'i-‘;'
(1.7a) v(O)w(t) = 0, v(€)w(t) =0, t 2 0 TR
AL
hot
d2W ,-\.f,;"t
-(ag¥ ——(t) iy
(Ade)(O) _ dt2 ::,-J' ,
mlv(O) w(t)
(1.7b) ) ;':f::l
d w ’._‘-:.‘-
dv -———(t) LR
—) (€ .’
(Ade)( ) N dt2 . o ;f;.;x
mzv(f) wit) ' - -
L RS
2 K A
_(agdv AW (e R
(AEgg) (0) + »,v(0) dt? e
mlv(o) B w(t) o
(1.7c) P, -:
2 ".\-'::
d'w
dv - (t) ..,\ Y
—_—) (£ RN
(REge) (€) *+ rpvie) el N
m, v{Z) T oTw(t) S (
\ N .':\
(RS
It is immediate that both sides of equation (1.6) equal a N
1_“.-_‘.\
N
ANOX




Y
constant, which we denote by ». We are thus led to seek a number }ﬁaﬁ
A» and a function v(x) » 0 so that LA

(1.8) 'cdi_x(A(x)E(x)%(x)) + c(x)v(x) = im(xX)A(X)V(x), 0 < x < £, N

From (1.7a,b,c) we get boundary conditions for v: R

{1.9a) v(0) = v(f) = 0, (Dirichlet type) QiRy
* .

Py
’l L

"l
2

—(AE%%;(O) = \m v(0)

o
v
e

5 5

i
]

({1.9b) (Neumann type)
dv _
h (AEH§)(€) = kmzv(f),

—(AE%%)(O) + 7,v(0) = Am v(0)
(1.9¢) (Newton type).
dv _ R
(AEI) (£) + 7,v(€) = Amv(€), :

The problem of finding A and v(x) = O satisfying (1.8) and a

boundary cohdition (1.9) of Dirichlet, Neumann, or Newton type is O
called an eigenvalue problem. ) is called an eigenvalue and Ei{i

v(x) a corresponding eigenfunction, or eigenvector, of the prob- ggi;

lem, and (\,v) 1is often called an eigenpair. If 1\ is present ;y_xf

.." o

in one or both of the boundary conditions, the problem is referred :3&;-

A to as a Steklov-type eigenvalue problemnm. Eﬁi;’

For the sake of definiteness, let us suppose we have a Newton

I

type boundary condition at 0 and a Dirichlet type at ¢ and

’

T v oy

&, 'A' .,

further assume that m, = 0. Thus we are considering the initial-

1 O :

boundary value problem .

2 A
a au a u B S
“I% ( AEﬁ) + cu = -mA—;

(1.3)
1.4c¢’ AE2Y) (0, t v t) = -
(1.4c) ~(AE3Y)(0.t) + r u(0.t) = o0,

(1.4a")

\"- -

T e
u(f,t) =0, t ~ O RGN

}

U
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|u(x,O) = tl(X)
(1.5)

du

3t

SANN A
SRy

F'd

l. 1)
iy,

(x,0) = tz(x), 0 < x < €.

The corresponding eigenvalue problem is ..
g W

d du
—— e = £ ~ -
I (AEd ) + cv AmAv, 0 < x < "

du _ ..:
(1.10) —(AEE§)(O) + 71v(0) =0 AR

S
v(e) = 0. i

L

It is known that problems of this type have a seguence of

eigenvalues

(1.11) 0 <A, <\, < ... "+

and corresponding eigenfunction
(1.12) vy (x), vy(x),

The eigenfunctions satisfy

£
. . V. =5, .,
(1.13) J m(x)A(x)Ji(x)vJ(x)dx ij
0
where aij =1 if i = 3j and Sij =0 if i1~ j, 1i.e., they
are orthonormal; in addition they are complete in L2, i.e., any mr
function h(x) €« L2 can be written as izif:
© e
1.14 = VLX), A
( ) h(x) ; chvJ(X) TN
IR
where ’Yﬁk\
A
¢ 2§02\
- ALY
(1.15) cy = j mAhY jdx NN
° .
S
L RO
and the convergence is in the L2-norm. Regarding (1.11) - (1.1%), o
e
bRy
9 o IV §.
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see (4.10) - (4.:14).

Corresponding to each ‘j we solve
(1.186} ~——(t) + xjw(t) =0, t >0

{cf. (1.6)), obtaining

wit) = wj(t) = a, sin /lj(t+6j),

where aj and 9j are arbitrary. Thus the separated solutions

are given by

(1.17) ajvj(x) sin ylj(t+9j), j=1,2,...

It is immediate that
(s V)
(1.18) u(x,t) = :E:ajvj(x) sin /lj(t+9j)
j=1

is a solution of (1.3"), (1.4c’), (1.4a’) for abitrary aj and
8 ., provided the series converges appropriately. It remains to
satisfy the initial conditions (1.5°). For this, aj and Hj

must satisfy

u(x,0) = Zjaj sin /T;ejvj(x) = tl(x),

Ju - =
HT(X,O) zjaj/xj cos /ljejvj(x) r2(x).

From the complete orthonormality of the vj(x) we see that these
two equations uniquely determine a_. and Qj' Thus (1.18), with
this choice for aj and Qj' is the unique solution of (1.3"),
(1.4c’), (1.4a"), (1.5).

The simple motions given in (1.17) are called the eigenvi-

brations of (1.3"), (1.4c’), (1.4a"). All the points x of the
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A

) !.}
s
'J »
NOGN,
th < X A
j eigenvibrations vibrate with the same (circular) fregquency A
LA
v '-\ ."- X
(defined to be the number of vibrations per 2n seconds) and e
] . . . . rr
phase displacement {ljej and the point x vibrates with ampli- :“?5
PT)

tude proportional to vj(x). Thus yxj is the frequency with ??:
_,5 '\.

Y
which the jth eigenvibration vibrates and vj(x) gives the basic L
" g

shape of the eigenvibration. The amplitude factor aj and Gj &F%
bt

are determined by the initial position and velocity of the eigen- ESR-
o'’

vibration, whereas lj and vj(x) are determined by the physical -
ERCR
\ process itself, as represented by (1.3'), (1.4c’), and (1.4a’). Ifji'
‘:':'.r_\
We have seen that any motion of (1.3"), (1.4c’), (1.4a') can be BN
SR Y

AN

written as a sum or superposition of eigenvibrations. ’“ 
;.l .:"

So far we have been dealing with free vibrations, i.e., we }Rij
NN
have assumed f(x,t) and R in (1.3) are zero. Now we briefly ’4?3

consider the case when f » 0O and R = 0, 1i.e., the case of
forced vibrations. If we write .
f(x,t) = ij(t)\‘zj(x)m(x)A(x), >
j:l F'_-" -
r\—\'-
[s +] n-‘:-.‘:-
-\.-:‘_-
then we easily see that u(x,t) = :Z:.a.(t)v.(x) is a solution if :}gf
j=13 J J *‘C-"S"
a“(t) + r.a.(t) = £.(¢t). :":::“f-
S8+ Ajagt) = £40t)
RN
'._.-'::.I
If, now, fj(t) = sin /lj(t+9j), then we see that aj(t), and PR
hence u(x,t), will be unbounded as t—®. This phenomena is ';§§
'\n“v)'
called resonance and f is called a resonant load: the resonant ﬁﬂ?
.\',%
frequencies are /lj, j=1,2,... . ':ﬂg
The damping term R could be defined in various ways. For xii
L
a -
example, we could take R to be ”5%' for a constant u, which f;ﬂl
RS,
"jx
11
SR
S
...................... A
........ ey
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\f\*
a'.
» .';:
du %R
] would lead to a term of the form f.lﬁ in equation (1.3).. ;\f
S s
Eigenvalue problems similar to (1.8) and (1.9) or (1.10) oM
: arise in a number of other situations. We now briefly mention &
A
. some of then. 23"" v
’
The Transverse Vibration of a String 4 >
‘ We are interested here in the small, transverse vibration of a ;;Z‘
o
e
homogeneous string that is stretched between two points a distance ;_
e
. € apart. Gravity is assumed to be negligible and the particles
of the string are assumed to move in a plane. We denote the den- % s
X o',
Yy L)
sity of the string by r and the tension by p. We restrict our ;’:':-
"
! attention to the case of free vibrations. b .
‘}-'
If the particles of the string are identified with the num- o
Sy
N bers 0 < x = £ and if u(x,t) denotes the vertical displacement ‘_.‘_
b T
v
of the particle x at time t, then u satisfies Za
B,
2 2 ;
. P ulx.t) . 2B o x e, b0 o~
! (1.19) ax at X .'::;
u(0,t) = u(€,t), t > 0. LA
» o)
We see that (1.19) is a very special case of (1.3) and (1.4a). T
"f.
The associated eigenvalue problem is ;S;(
,' 2 " o -.i
‘ -Cv”"(R) = \v(x), 0 < x < ¢ .y
(1.20)
v(0) = v(€) = o, o)
Dt
‘o::‘l
] where 02 = p/r. It is easily seen that the eigenvalues and ;;.:';\
» S
o
! eigenfunctions of (1.20) can be given explicitly; they are RSN
wend
Py k2c2n2 SN
(1.21) A = m——
k ¢l
AN
WY
.‘.'.\
' -\.I
- and ':\'::
RO
12 Y e
[§ 29
RV

-
A TR Y, 3 S ) “~

| ®RW y LD " Pl WL R N e ‘e [N “e Su e ] T .y v = W 'y
r‘- \ O‘-,l-l‘n » ‘» .. nl.- I\. > k " » s B " I m S A a *M‘ﬁﬂﬁ\i\t y A\fh

LY
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[ k’”
(1.22) v, (x) = 2/% sin =, k=1,2,...
The entire discussion of the elastic bar — i.e., the discus-

sion of separation of variables, of eigenvalues and eigenfunctions,
and of eigenvibrations - applies to this problem. We note that it
is possible to find the eigenvalues and eigenfunctions explicitly
only in very special situations, roughly, just in the case of
eigenvalue problems for differential equations with constant coef-
ficients in one dimension. 1In general, one must resort to approx-
imation methods. The discussion of such methods is the main topic

of this article.

Characterization of the Optimal Constant in the Poincare Inequality

The Poincare inequality states that there is a constant ¢

such that
£ £

(1.23) J [u(x)]2dx < CJ [W(x)]zdx
0 0

for all functions u(x) having a square integrable first deriva-
tive and vanishing at 0 and #. Let us consider the problem of

finding the minimal constant C. We are thus interested in

£

J uzdx

(1.24) C = sup [o
(u')2dx

a f
u(0)=u(€)=0 )

Using the elementary methods of the calculus of variations we find

that the function u achieving the supremum in (1.24) satisfies

.' LA * <"
A" At e >

L)
)
»
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A% e
X

for all v having square integrable first derivatives and vanish-

ing at 0 and <¢. By integration by parts we then find

1
-u” = = < < £
u Cu, 0] X

u(0) = u{€) = 0.

(1.25)

Thus 1/C is lowest eigenvalue of the eigenvalue problem (1.25),
and the optimal u in (1.24) (which achieves equality in (1.21))
is an associated eigenfunction.

B. Higher Dimensional Problems

The Vibrating Membrane

Consider the small, transverse vibration of a thin membrane

stretched over a bounded region Q in the plane and fixed along

:’{'l.;l- -
e

X0

B 4
.

T T Ja A
27
.i'r .l

its edges I = 8Q. The vertical displacement u(x,y.,t) of the ;ﬁ%
point (x,¥y) in Q at time t satisfies ﬁ&;
N
2 2 2 :::'*\':

-
du=-23-28_- 948 (x40, t>o0 N
{1.26) ax 3y at A
u(x,y,t) = 0, (x,y) € 82, t 2 0. F

o
As with the vibrating elastic bar or the vibrating string, if we ;Q}f
‘-- N

seek separated solutions of the form u(x,y,t) = v(X,y)w(t), we ¢
:x A
are led to the eigenvalue problem of finding 1 and v{(x,y) = O {Q::
satisfying :35:
NN

- = .".':'
(1.27) AV S Av, txy) € @ =
V(XIY) =0, (x,v) € aQ, :':\:'c

:q::n:

Y

and for each eigenpair (A,v) of (1.27), to the differential T
equation &f&
;%

’\-

k,
14 .
5

AT

\\,)...’ _,.‘.L“ "e "K - 1 .' _.. };‘x}xz-.:_\;ﬁ‘h‘ ’_\3_\:_: .... ., -.:_-.;:.'}-,;\:,:-"_-.:,-.:'\}\:-_-.}'.:,:-:_?.Z_\:,\'- ',},:.' ‘e .1_\:_'. oy \::\i
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(1.28) AW i) +aw(t) = 0, t o
a2

v
(o]
'l

for w(t) (cf. (1.16)). ‘f\'

It is known that (1.27) has an infinite sequence of eigen- &0
values

"N

S

0 <y = A, < ... /" o f”

and corresponding eigenfunctions '§§§

vl(le)r vz(le)' L :“u

The eigenfunctions are complete and orthonormal in L,(Q). el

ajvj(x,y) sin /lj(t+ej), j=1,2,..., are called eigenvibratibns.
RGN
/lj is the freguency and vy(%,y) is the shape of the it Y
=
p
eigenvibration. All solutions of (1.26) can be obtained as a P

superposition of eigenvibrations (cf. (1.18)). We note that if,

A"

instead of fixing the membrane on I, we allowed it to move free-

‘&l\l

[}
a1

RIS
p, f\“’

ly in the vertical direction, then we whould have the Neumann boun-

dary condition g% = 0, where g; denotes the outer normal deri-

XA S
TR R
[

1

vative, instead of the Dirichlet condition u = 0. The approxima-

Y

5

tion of the eigenpairs of a membrane is discussed in Subsection

AP EL A
NN,

" .\‘ \
i0.B., 11.B., 12.A., and 12.B. ,
i
The Problem of Heat Conduction §¥
Consider the problem of heat conduction in a body occupying a §k'
region Q in three-dimensional space. We suppose the temperature -}é:
&
distribution throughout ¢ is known at time zero, the temperature 5'§
A
is held at zero on 40 for all time, and that we want to deter- o

mine the temperature u(x,y,2,t) at the point (x,y.,z) = Q at

time t > 0. From the fundamental law of heat conduction we know

15
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that
(3 du 3 du 3 du
“ax (P(XY.2)53) - F5(P(XY.2)5) - Fz(p(x.y.2)57)
a
(1.29) J = -r{x,v,2)5¢, (%,v,2) =@, t >0
u(xIYIZIt) = 0, (X'Y,z) € aQ, t 2 o
lu(x,y,2,0) = f(x,v.,2), (x,v.2) € Q,
where
f(x,y,2) = the temperature distribution at t = 0,
p(x,y.2) = the thermal conductivity of the material at
(x,v.2),
and
r{(x,y.z) = density of the material times the specific heat of

the material.

If we seek separated solutions
u(x,y,z,t) = vix,y,z)w(t)

of the differential equation and the boundary conditions in (1.29)

we are led to the eigenvalue problem

a3 v a ov 13} av

- (pg-) ~ ==(ps=) - s=(pP5=) = Arv, (x,y.2) = Q
(1.30) % "ox dy ' “dy 3z '*3z

v(x,v.z2) = 0, (x,vy,2) € 3Q,

and for each eigenpair (A,v) of (1.30) we are led to the equation
(1.31) Ww +iw =0, t >0
for w(t) (cf. (1.16) and (1.28)). (1.30) has eigenvalues

0<llsl_2s.../’®

and eigenfunctions
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satisfying

J vivjr dx dy dz = 6ij'

Q

A
AYe

0

PR N
hff
s —

X
L3
?s

Corresponding to each lj’ from (1.31) we find w(t) = wj(t) =

h )

[
~

-1;: t
e J°,
]

a Thus the separated solutions are given by

422)
£ 2]

-A; t
V.(x,y,z)e 9, 3 1,2,...
aJ J( Y. 2) J

&

RS
i xa

4 %
'&-

and the solution of (1.29) is

s V]
(1.32) u(x,y,z,t) = j{:[

j=1

S8
P
v g

»

1t

s
i
v '
()

[ ijr dx dy dzlvj(x,y,z)e—
Q

A LS
7’

AY
7’
Wy

(cf. (1.18). We note that from (1.32) and the positivity of the

eigenvalues, one can show that 1lim u(x,y,2,t) = 0 and that the
too

rate at which the temperature u decays to zero is largely deter-
mined by Xl.

The Vibration of an Elastic Solid

The vibration of an elastic solid Q, the three-dimensional
generalization of the elastic bar, is governed by the Navier-Lame

equations

L
"'l'-"'i -
AN XA

"2,
B

[

where u(x,vy.z,t), vi(x,y,z,t), and w(x,v,z,t) are the x,vy.

I'I

’ e

and z-components of the displacement of the point (x.,y.2) < Q

TN
P A
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%
, x
du Ay . Aw s
Y at time t, 9 = =— + =— + =—, X,¥Y, and Z are the components of D
; ox 3y oz RN
1%
! the external force per unit volume acting at (x,y.,z), A > 0, and veut
u > 0 are the Lame elastic constants, and p is the density of iS'
:‘:‘:s
y the material. iy
; A0y
As in the case of the bar, boundary conditions of various WY
LI
types may be prescribed. For example, the Dirichlet boundary con- ﬁf:
ditions prescribe the values of u,v, and w on I = 3Q. Neumann ﬁi:
F~"‘J
conditions are more complicated. Let n be the unit outer normal e
3 to I, let nx,ny, and n, be the x,y, and z-components of 'iﬁ
o
) n, and let e
S . n 9 +n 9_ 4 n 9 ‘ : 2ii
on x0x vay zdz “
S e
) be the outer normal derivative. Then define lﬁ%,
X IR SRE
- du du v aw e
(1.34a) Xn—lenx+ua—n-+p[a—x nx+ﬁny+&nz]
N
_ av du av aw o
{(1.34b) Yn = leny + “ﬁ + [l[a—y' nx + ﬁ n_+ ﬁ nz] “\.-..\.
Ay
_ 3w du v 3w A
(1.34c) Zn = \an + “a‘ﬁ + “[ﬁ nx + 3z ny+ 33 nz]. ;
N LW
N
S
The Neumann conditions then consist in prescribing xn'Yn' and ;?z
Zn on the boundary. One can also mix the boundary conditions in :;:
various ways, e.g., impose Dirichlet conditions on one part of the -
- .\-.
5 AL
- boundary and Neumann conditions on the remainder of the boundary o
‘('\‘.‘
or prescribe X , Y , and w on T. ARG,

The eigenvalue problem associated with (1.33) is given by

3 -

36
(2 —_— - ,
( +I'I)8x ffAu = wpu

(1.35) <-(l+,u)%9§ - HAv wNVY

opw, (X,y,2) = O,

A 96 A
= +ll)é—£ - HAW

"




[y R

4

N

i

where we have denoted the eigenvalue parameter by ® (to avoid

confusion with the Lame constants #4 and 1), and where here

u,v,w, and 6 denote functions of x,y, and z only, i.e., the
separation of variables has been written as u(x,y.z.t) = u(x,vy.,2)
T({t), etc. For boundary conditions we can consider any of those
mentioned above. If we consider Dirichlet conditicns (u = v = w

=0 on ') we refer to the clamped solid and if we consider
Neumann conditions (Xn = Yn = Zn =0 on ') we refer to the
free solid.

The approximation of the eigenvalues of the free L-shaped

panel (a two dimensional analogue of the elastic solid) is treated

in detail in Subsection 10.A.

The Steklov Eigenvalue Probleam

The Steklov eigenvalues of the differential operator -A + I
are those numbers 1 such that for some nonzero u,

-Au + u =0 in @

— = Au on T = aQ.

Problems of this type, in which the eigenvalue parameter appears
in the boundary condition, arise in a number of applications (cf.

{1.9b) and (1.9c)).

The Problem of Stability of a Nonlinear Problem

Consider the quasilinear parabolic problem

fau A Ju o _

ﬁ u+\I5-§-—,(X,Y)(:Q,t>O

u(x,y,t) = o(x,y).(x,y) = 3Q, t > 0.
Suppose ﬁ(x,y) is a stationary solution, i.e., suppose
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‘-AG. + U = 0, (x'y) = Q' -~ -.

G(X.y) = o(x,¥y),.(x,y) = 3Q.

YNY N

»

Then we consider a nearby time-~dependent solution

<

ARG

b

V<
X

\d

u(x,y,z,t) = u(x,y) + w(x,y,t)

f'-’g
’
Y 4o

K
[
A

and ask whether ﬁ is a stable stationary solutions, i.e.,

a
7
o

LY
s

whether

N
gy’

lim u(x,y,t) = G(x,Y)
t-

“y
'
o

Ll"

W

or, equivalently,

.
[
»
LY
[

P o

g
5 Y

A lim w({x,y,t) = 0.
t+o

’

NASS
P {'\‘

We easily see that w satisfies

5"'- 35
Vs .‘.‘ g I

. g% + Lw + Nw = 0, (x,¥y) € Q, t > 0

(1.386)

R
'.f(

‘
g

w =20, (x,v) € 8Q,

5
Y

X o
{.l.“.,.'l ‘l. L;

P S ]

b

7
g

where

14
Q@
b
Q
[
L’
[ d
v

Lw

1
N
b4
+
[
I
+

and i

4
£
]
b
%]
=
o
(\I‘: N‘ ‘: ‘1' *,

Conditions ensuring w—0 as t—» can be given in terms of the
eigenvalues of
[Lw = 1w in @

lw = 0 on JQ.

In fact, if all the eigenvalues of this problem have positive real

~

parts, then u is asymptotically stable in the L2 norm, i.e., . 4

there is a constant & > 0 such that if o

20

PN LT 4 P 2 W W w, Wt R A T N Y T I A LU T T TRRC A t S >
A A N AN A AT T L e AR O AR RN SRR I N e T T
M (o o W ML " "_f:ﬁw ,-.':(.f-.‘:;(‘.uf.:ﬂ. J:f:ﬂm;’-{:‘kt}i‘I}SAAAJ_.C_;:L;&\J\"

At o ol



. 8'a £°a' Bta'R'n Ao cav. at gl eV i, gty mY el ‘ab gt)’ N Yo aly: ta pvo'qlg gta afe 2¥ U ‘oAl Sa afe A0a Ale AV fiy 8Fn Ale fts Ala Loa S6o Ao b B S A A0 B A 0 0 0 0 0 g

then

ol
> 4
3

i « . I
Twi(e, ,t)xLz(Q)—-»O as t—xw,

e
IR

If the term N in (1.36) is neglected, then this result is simi-

\'
-

' lar to that mentioned at the end of the discussion of heat conduc-
tion. Note that L is a nonselfadjoint operator and its eigen-
values will, in general, be complex (cf. Section 3). For further

detail on this type of stability results see Prodi [1962].
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Section 2. Sobolev Spaces

The natural setting for a discussion of eigenvalue problems
and their approximation is the theory of linear operators on a
Hilbert space. 1In this section we will sketch the definitions and
basic properties of the function spaces we will make use of.
These are mainly the Sobolev and Besov spaces.

Let Q@ be a bounded open subset of R" and denote by x =

(xl,...,xn) a point in R®. For each integer m > 0, the real

{complex) Sobolev space Hm(Q) is defined by
(2.1) H® = H™(Q) = (u : 8%u = Ly(Q) ¥V lof < m),

where L2(Q) denotes the usual space of real (complex) valued

square-integrable functions on Q equipped with the inner product

(2.2) (u,v) = (u'V)LZ(Q) J uvdx
Q
and norm
, - 2 1/2
. fali = fak = .
(2.3) IRV u Lz(Q) (J Jul “dx)
Q
On Hm(Q) we have the inner product
a Q
. ’ = ’ = g (")
(2.4) ((w,v)) = (lu,v)) o Zldlst 8%ua%v ax
Q
and norm
. P . a2 1/2
HESRL = il = liyn =
(2.5) hall o ai o at g (Zlalsm[ fd ul “dx) .
H(Q) .
Q
With this inner product, Hm(Q) is a Hilbert space. Here «a =
(al,...,on), with the ai a nonnegative integer, x| = Zi”i’
a la| ay ag, ..
and d ' u =9 u/ax1 ,...,axn . We also have the semi-inner pro-
duct

22

S LR o LA L T A Y N Sy R Y o AT A s
:" W AN L T f":'" f.."-,'r-'-f-'-"- ‘e '\"'-"v':' AR R g R AL iyt & DA \'\ N

-----
A A

R AN
.'.. “'l' [y o
‘n“ e

AT
s

“a2 a4t
5
Y

\{'\
PR

,-
]

7’

"
3

N

AN

oy

]

—"f.f.f
.
s 00,0,
*
h}

Ll e



s
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2
o
o
s
a Sa DD
= ,V = (u,v = d ud vdx o
(2.6)  (wv) g (w vy = (Wi g me[ o
H' (Q) 0 _
) and semi-norm a?;
’
. ) ) r"':'
. a 1/2 f\
L) = = = .
(2.7) lal lal, = tul, (2|a|=m[ 10%a 1 %ax) e
H (Q) !
Q
o] SR
Y . . : = HETL = = a0
It is immediate that H (Q) LZ(Q) and ”u'o,Q 'ulo,Q :23;
!!u!!L Q)" If I = 98Q 1is Lipschitz continuous, then Cm(ﬁ) is j:::::*
) 2 .';-s:
dense in Hm(Q). (T is called Lipschitz continuous if it can be B
: e
- locally represented by a Lipschitz continuous function; see Necas e
(1967]) for further details.) 4-\
h’\’
‘ -
- Hé(Q) is defined as the closure in Hl(Q) of C;(Q), the C
- space of infinitely differentiable functions on @ which vanish j:'.:'-'
’ near [. The Poincare inequality, which states that '.1'-:::-
-I‘_.
, . -
{2.8) Iulo'Q < CIuII’Q, VvV u e HO(Q), R
? shows that |-|1 o is a norm on Hé(()). Hrg(Q) is the closure in f-j:_':_
o¥] ’ « "
g
H"(Q) of c"g(o). R
q g
If I' 1is Lipschitz continuous, then we can define the space ':-:',:
et
A L2(I‘), which consists of functions u defined on T for which :“;:
y .
E!uHL () = (J Iulzds)l/2 < », where ds denotes the surface area. e
2 r -
Lz(l‘) is a Hilbert space with inner product (u,v) = [ uvds. -f:;j:
L,(r) °r
», 2 _.._'-
A It is also known that a function u < HI(Q) has a well-d :fined '::
restriction to I, denoted by tr u, in the sense of trace: 1= f-:_/_
- tr u satisfies S
A
- LR P Syt . 1 SN
(2.9) ‘uLz([.) . C‘u‘l,()' Y ue H (Q), -'.
- and o,
- R
N
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Hé(o) = {u - HI(O) u=0 on T in the sense of trace}.
Furthermore, a function u = CI(G) is in Hé(Q) if an only if
u =0 for all =« =T. We note that if T is Lipschitz contin-
uous, then the normal vector n 1is defined almost evervwhere on
. . du . -
!'. The outer normal derivative Ih is defined for u = H (Q).
2 _ 2. _ du _
HO(Q) = {u < H”(Q) u = Im = 0 on T}
We shall occasionally make use of the vector valued Sobolev
spaces M™(Q) which are defined by
. m o m . ,
(2.10) =7(Q) = ((ul(x),...,uk(x)) : uj(X) = H(Q), j =1, K5
and
2 _ 2 2
(2.11) U = Y mee T T om0
B (Q)
In the study of eigenvalue problems, central use will be made

of Rellich's theorem (cf. Agmon [1965]),

bounded sequence in Hm(Q)

HJ(Q) if j < m, provided @

a Lipschitz continuous boundary.

So far we have defined the Sobolev space

an integer. We will sometimes use Hm(o),

and also the Besov spaces,

using the K-method.
For u - Hm(o) and 0 < t < v set
(2.12) K{u,t) = inf +1( v m,o +
% Hm,w Hm
v+wW=u
Then for m < k < m+1l define
24
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which states

has a subsequence which converges

. . n _
is a bounded cpen set in R with
m .
H (¢) only for m
for m fractional

so we now turn to their definition,

that every

in

v
Y

m+1
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{ -
(2.13) = u, = u = (| 1t % ¢(t,uyy? 4¢,1/2
Kk k k,Q t
H(Q)
0
and
. ~0
{2.14) R = sup {t "K{u,t)},
H(Q) 0<t<ky
where 6 = k-m. The space
k _ _ .
(2.15) HY(Q) = {(u=s H(Q) : yup Kk < x}
H™(Q)

is the Sobolev space with fractional order k and

(2.16) B 0) = (u

M

m
H (Q) : A . < 'x’}
Hk(Q)

k

2,9’

In order to fix these ideas and to obtain a fact we will use

is a Besov space, the one often denoted by B

in the seguel (cf. Subsections 10.A. and 10.B.), we now consider
the function

o

ua=r, for (r,9) = 8 = {(r,86) : 0 < r <1, 0 - 0O ”O 2n)
where -1 < a < 0, (r,®) being polar coordinates, and prnve that
u = l}(]+1(8).
Theorem 2.1, For -1 < a < 0, we have
u = r” z é1+”(S).

Proof. Let ¢(x), 0 < X < x, be a function having derivarive. of

all orders and satisfying

(X)) = 0 for 0 < x < 1 2,
e{x) =1 for 1 < x < v,
For 0 < & + 1, define

v = [1-¢(5)]u,

25
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K(u,t) c[o v + ')
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If 0 <t <1, let & =t to get

7 D piat) < 20

and hence

sup (t”“*Vg(u,t)) s 2c.
0<t«1
If t : 1, we obviously have
K{u,t) = ul 0 s C
H7(Q)
and hence _
sup (¢ (“*Vgiu, )y ¢ o
1< t<x
Therefore
"ul‘(1+u) sup {t—(l+O)K(u,t)) s CY < x
H (8) 0<t<w
. altd
and hence u = H (S), as was to be proved.
- a _ S l+a
In a similar way, one can also prove that r < H (s) for
@ > 0, not an integer. Finally we note that r“ = H1+”(S), but

[V 1+u-¢
r [

H (S) for any & > 0.

For a complete discussion of the Sobolev and Besov spaces we

refer to Adams [1975], Necas [1967], and Butzer and Barens {1967].

Remark 2.1. The definition of the Sobolev spaces with fractional
index m has a very simple interpretation. For u to be in
H1+”(S) means that for any 0 < t < x, u can be split into the

sum of a smooth function and a nonsmooth function in a natural
way. We have employed this natural splitting in the proof of
Theorem 2.1 and we will use it in the sequel.

So far we have considered only one special family of Sobolev

spaces or Sobolev-type spaces. Several other families are impor-

27

o oW At e Ty,

iyt f:(:f'f'¢'f PCAC SN

¥ 5 ¥,
' A
-:.!.11 b

~

IR
_;"i ) .l. ': [

o

iV

Yol dd 4, 1".
ek

"l""‘
& v
A v ‘V'

P )

/

'.ﬁll‘
fS

%

‘7
Ay &

P
o 4
RN

¢
)

AR A

!



Yy «_.:' i
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‘tant in various situations. For example, if © < R with 0 = Candl
e
nY.
AQ, and if 0 < 3 <1 and m = £ 2 1, we can define
. _ P9
L}
(2.17) _:\
b m, € £-1 a_ | 3+|al-e e
- Hy'T(@) = {ue H (@) : (8"u)r € L,(@) for £ : |al : m) i
and o
) o t::-f:.
b
1, 3+|a| -4 2 -
(2.18) w2 , = u? + z C(@%uy il , oo
i ™ ¢0) 11 (0) Ly (2) NG
™~ 3 ]Cl ’ ={ [N
‘ T
" 2 2.1/2 . . , g
b where r = (x1 + x2) Spaces of this kind are called weighted o
. el
LIS
: Sobolev spaces. For more details we refer to Kufner [1985]. Con- N
N , o]
‘ sider the function u = r’, with 0 < » < 1. One can show that .-G
'I-.n'
£ SRRy
u € HB' (), where Q@ = {(r,0) : 0 < r < 1}, for 3 > 1-;, m = 2, S
and ¢ = 2. In fact, since 3% = C(a)r}_'al, we have :ﬁf'
el
; - ;3= £ . h
,aau'r3+lal 2 < rf 3 2, and we see that u < H?’ () for m,¢t, .-
] and 3 as given. T
) AR
¢ We will also have occasion to use countably normed spaces ujl
constructed from Sobolev spaces. For example, consider the space -
- :::\
l\
A 1{-2+3 ! O
- (2.19) 8%(0) = (u = 2 20) o (@%yp! M2 . catla s
- L, (0) s
ik
for J|a| > 2, with C and 4 independent of «}. .
i It is easy to see that all functions u = B?(Q) are analytic in 53:
-’ «
. — . > . 2 3 :
:. Q - {0}. The function r’ considered above belongs to Bf(o) :J;
for 3 > 1-). We have here only considered weights with respect G;‘
: T
B, to the origin. More generally, one can consider weights with res- ﬁf’
RN
" pect to the vertices of domains with piecewise smooth boundaries. ;f
An important reason for introducing these spaces is to characterice N
* '\:‘\.
': the solution (eigenfunctions) of a problem as precisely as possible ft;
3
s o
. 28 - ’
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by embedding it (them) in as small a space as possible. There are

II other classes of function spaces that are important in various

contexts, but we will not go further in this direction.

Remark 2.2. We have followed the usual custom of using the same
notation for real and complex function spaces. It will be clear

from the context which version we are using. See Remark 4.1.
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Section 3. Variational Formulation of Eigenvalue Problems

In Section 1 the eigenvalue problems were stated in classical
form, i.e., we were seeking an eigenvalue 1} and a corresponding

nonzero eigenfunction wu(x) such that the eigenvalue equation and

boundary condition were satisfied in the classical pointwise sense,

These problems can alternately be given variational formulations.
Since finite element approximation methods are most naturally
defined in terms of variational formulations we now briefly indi-
cate how eigenvalue problems can be cast in variational form. We
will do this by discussing 2"?  order elliptic eigenvalue prob-~
lems in two dimensions in some detail. We begin by describing:
this type of problem.

Consider the problem:

Seek a real or complex number \ and a nonzero real or

complex valued function u(x) satisfying

(Lu)(x) = Vv (Mu)(x), x = Q
(3.1)
(Bu)(x) =0, x <= I = 3Q,
where @ is a bounded, open, connected set in R“, and
2 2
(3.2) Lu(x) = - Z ()j(aij(x):)iu) + Zbi(x)diu + Cc{x)n, ("'i Rl
N X i
i, j=1 i=1
where aij(x) = aji(x), bi(x), and c(x) are given real or com-
plex functions on «Q,
(3.3) Mu(x) = d(M)u(x),
where d(x) is a given real function which is bounded below by a
positive constant on ¢, and
30
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(u(x)
or
(3.4) (Bu) (x) = < 2
- Z aijnjaiu,
L i,j=1 :
where n(x) = (nl,nz) is the exterior unit normal to I = 30 at
X. L 1is assumed to be uniformly strongly elliptic in Q, i.e.,
there is a positive constant a, such that
2 2
2 I
(3.5) Re Z aij(x)tif:j > aoZEi, V x<=< Q and V(El,zz) < R7,
i,j=1 i=1

In addition, aij’bi'c' and d are assumed to be bounded and

measurable. (A portion of the theory of eigenvalue problems can
be developed under the more general hypothesis that d(x) is
merely assumed to be a bounded, measurable, complex function, but

we will not pursue this direction.)

(A ,u) is called an eigenpair of the 2nd order differential

operator L (relative to the o'" order differential operator

M). If Bu = u, the boundary condition Bu = 0 1is the Dirichlet
2
Z a,.nd.u = ou _ the conormal deriva-
137391 v
i, j=1
0 vields the Neumann condition.

condition, and if Bu

tive of u, then Bu

It is immediate that all of the examples discussed in Sec-
tion 1 - except the Steklov-type eigenvalue problems and the prob-
lem of the vibration of an elastic solid - are of the form (3.1)
or its one or higher dimensional analogues. 1In any case, our dis-
cussion of approximation methods will be in terms of an abstract
framework that will cover all the examples.

Let
31
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(3.6) L v(x) = - L (a 6 v) Li (b v) + cv o

. i,3=1 K
. and 4':
q 2 2 e
\":.'.‘ av N,
(3.7) ;*“Z 1371959 Z 2

v i j:l i=1

,. ' 4.
ks * i
L is called the formal adjoint of L. It is an immediate conse- ;:-

i
::: quence of the divergence theorem that N
- 2 .
~a - - - Au- g
o (3.8} J Luvdx = { { Z aijaiuéjv + Zbiaiuv + cuv)dx + J mvds ;__-
Q Q i,j=1 i=1 r N

o .
UNZ] S
é * ..lv
= J uL vdx + J g—gvdx - J uﬁ,ds -

=" al) ..-'
7:.: Q r r :-_::
for all smooth functions u and v. Hence we have :."_'r

by * -

(3.9) J Luv dx = J ul vdx PN

- Q Q PN
s. ".
if either u=v =0 on I or 9u = ov =0 on I. 7

dv *

v )

- * a S
If a, and ¢ are real and b, = 0, then L =L and

ij i A .

o S
. 3 . e
'\': = - In this case we say L,M,B or, more briefly, L is for- s
ar Y

Ky mally selfadjoint, and we have ;.
. P'
L)uv dx = | du(ir)v 4 3
u\:, (3.10) d(aL)uv X = u(a )V X ;.e
LY 0 0 -
) Y

. ) Au  Av -
. if either uw=v=0o0on ' or z— =-— =0 on . All of the o
-~ av av o
ha)

- examples treated in Section 1 are formally selfadjoint except the :.f-
!,l -
L Ooperator arising in the stability analysis of the nonlinear ~ 1
;:[ initial-boundary value problem. \.r
v 2
- :\J'
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Now we turn to the derivation of a variational formulation
for (3.1). Suppose (},u(x)) satisfies (3.1) in the classical
sense, i.e., the differential equation and the boundary condition
hold pointwise, and consider first the case of the Dirichlet boun-
dary condition: u(x) = 0 for x < T. We assume { 1is a bounded
open set in R2 with Lipschitz continuous boundary I . Then,

multiplying (3.1) by v, Integrating over ¢, and using (3.3)

and (3.8) we find that

(3.14) Ab(u,v) = AJ duvdx
Q

n
“—_-ﬁ
o
c
<
o%
]

[

3
It

[y

il
—
[
/2
[
M~
'
D
[
[
o3
u.|
<
+
M
log
[y
jo3)
[
[+
<t
+
(9]
c
<
e
[o8
b

= a(u,v), for all v

1
Q
<
-

that vanish on I'.

a{u,v) and b(u,v), as defined in (3.14), are bilinear forms

(sometimes referred to as sesquilinear forms in the complex case)

in u and v. They are clearly defined for wu,v = CI(G) and, in
fact, a(u,v) is defined for u,v = Hl(Q) and b{u,v) for

u,v © HO(Q) = L2(Q). Furthermore, using the fact that aij'bi’c'
and d are bounded, it follows from Schwarz's inequality that a
is bounded on Hl(Q) and b is bounded on HO(O), i.e., that
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) 1
3.1 | , I < gt ligll , Vv , = Q) ,
{ 5) ta(u,v)! Cl“u‘l Q,,v,,1 Q u,v H (9)

A

(3.16) Ib(u,v)| = Chul  ,ivi v u,v e H2(Q).

0,Q 0,0’
We note one further property of the form a(u,v):

-}

0] 2 1 .
_— i
5 ““”1,0' ¥V ue H (Q), provided
a 2
Re c(x) 2 9 + E—— . for all x = @,
2 2a
0
(3.17) Re a(u,u) » { where b = max Ib,(x]l,
) ! B xeQ
i=1,2
a ful® > clul? ., vue H}Q), provided
0 1,0 ° U1, 0 '
bi(x) =0, 1 =1,2, Re c(x) 2 0.

a, here is the ellipticity constant in (3.5); the result follows

directly from (3.5).

Since the eigenfunction u wvanishes on I, u e Hé(o)
Thus, using (3.15), (3.16), and the fact that (v e C(Q) : v = 0
on I} is dense in H!(Q), it follows from (3.14) that the
eigenpair (%,u} satisfies
_ 1

u = HO(Q), u = 0
(3.18) 1

a(u,v) = Ab{u,v), V v = HO(Q).
(3.18) is called a variational formulation of (3.1). We have
shown that if (A,u) is an eigenpair in the classical sense then

it is an eigenpair in the variational sense. We now show that the

converse is true, provided F,aij,bi,c, and d are sufficiently

smooth.

Suppose (!,u) satisfies (3.18) and suppose in addition «Q
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is a bounded open set with Lipschitz continuous boundary I and

that u € 02(5). Then from the equation in (3.18) and from (3.8)

we have
- au -
(3.19) Luvdx.- = a(u,v) + 30 ds
Q Q

= a(u,v)

= 1b(u,v)

= l{ duvdx, V v € C1(5) that vanishes on T[.

Q

Since (v e C1(§) : v=0 on '} 1is dense in L2(Q) we see from

(3.19) that

Lu(x) = \Mu(x), x € Q.

Also, since [ is Lipschitz continuous and u = 02(5) ~ Hé(Q) we
know that u(x) = 0 for all x < . Thus we see that (}.u) is
an eigenpair in the classical sense.

c2(3).

N

We next present conditions that guarantee that u
From (3.18) we see that u 1is a weak solution of the boundary

value (source) problem

where f = 2du. Using standard regularity results for elliptic
equations we find that u € C2(5) provided F,aij,bi,c, and d
are sufficiently smooth. 1In the two-dimensional case we are dis-

cussing it is sufficient to assume

4
«+ ' is of class C,
I I
+a,.,b, = C (Q), and
ij'" 71
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©c,d = c2(@).
In the general n-dimensional case it is sufficient to assume
. k
« I 1is of class C,

c¥"1@), and

+ c,d = C (), where k = [n/2] + 3.
For these results we refer to Agmon [1965, Theorems 3.9 and 3.38].

Eigenvalue problems on domains with corners arise in many
applications but are not covered by the above results because of
the requirement that [ be smooth. Nevertheless, when Q has
corners, analogous results in a generalized form involving weighted
Sobolev spaces can be proved for problems with smooth coefficients
(see Grisvard [1985]) and Babuska and Guo [1987]). Furthermore
these results provide information on the behavior of u near the
corners that is important in assessing the accuracy of eigenvalue
approximations. This matter will be taken up in Section 10. We
now briefly outline the extent to which the eigenpair (3,u) of

(3.18) satisfies (3.1) in the classical sense in the case in which

Q is a polygon and L = -A and d(x) = 1. From regularity
results for elliptic equations we conclude that u < CK(Q-(vertices
of Q}). Thus we see that Lu(x) = AMu(x) for all x = ¢ and
u(x) = 0 for x =TI - {(vertices of Q}. u fails, however, to be

C2 at any

if]

an eigenfunction in the classical sense in that u

vertex of @ with interior angle larger than .

Under the hypothesis sketched above, the classical and varia-
tional formulations of (2.1) are equivalent. For the remainder of
this article, we will take the point of view that our eigenvalue

problems are given in variational form. Thus we will censider
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problems of the form (3.18), or problems that are generalizations
of the form (3.18); see Section 8.

Consider now the case of the Neumann boundary condition:

s x) = 0 for xe . Suppose (A,u) satisfies (3.1) in the clas-

sical sense. Then, using (3.8) we find

_ du -
Ab(u,v) = a(u,v) + J e ds
r
= a(u,v), for all v = C1(5),
and thus, using the fact that 01(5) is dense in Hl(Q), we see

that (A,u) satisfies

ue #l), uxo
(3.20) 1
a(u,v) = Ab(u,v) vV ve H(Q).

(3.20) is a variational form for (3.1) with the Neumann condition.

2

Now suppose (A,u) satisfies (3.20) and assume u < C“(Q). From
{3.20) and (3.8) we obtain
- du
Luvdx = a(u,v) + 50 vdx
Q r
(3.21) [
_ du -
= lb(u,V) + } (W vds
r
- 3 - -
= l[ duvdx + [ %% vds, V v < Cl(Q).
0 r

Taking v € 01(5) which vanish on I' we find that
Lu(x) = 2u(x), V x «

Thus (3.21) reduces to
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which implies that 5% = 0 on ['. Thus we have shown that (},u)
satisfies (3.1) in the classical sense. As with the Dirichlet

condition, the analysis is valid under appropriate smoothness
assumptions on F,aij,bi,c, and d. We will not state these in
detail.

Note that the Neumann boundary condition is not explicitly

stated in (3.20). It is, however, implicitly contained in (3.20).

We refer to the Neumann condition as a natural boundary condition,
in contrast to the Dirichlet condition which is referred to as an

essential boundary condition, and which is explicitly contained in

the variational formulation (3.18). The fact that the Neumann con-
dition is natural has important implications for the approximation
of eigenvalues; see Remark 10.5.

In summary, for (3.1) we get one of the following forms:

Problem 1: Dirichlet boundary condition

Seek 2,u » 0 satisfying

1
u « HO(Q)

a(u,v) = Aib(u,v), vV v = H

Problem 2: Neumann boundary condition

Seek ),u == 0 satisfying

u « HI(Q)

a(u,v) = Ab(u,v), Vv = H (0)
We will sometimes refer to (}),u) as an eigenpair of the form a
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relative to the form b. Regarding the forms a and b we assume

(3.15) - (3.17) hold.

In a similar way, many other problems — including all of the
examples discussed in Section 1 — can be given variational formu-
lations. This is done for a number of problems in Chapter III.
We mention in particular the eigenvalue problems corresponding to
the vibration of a free L-shaped panel (a two dimentional ana-
logue of the elastic solid).

Finally we wish to make one further point regarding varia-
tional formulations of eigenvalue problems, namely, that a given
eigenvalue problem can often be given a variety of different
variational formulations and that some of these may lead to more
effective finite element methods than others. We illustrate the
possibility of various variational formulations by considering the
simple model problem

-{a(x)u’)’ + cu =12u, 0 < x <1

(3.22)
u{0) = u(1) = 0.

This has already been cast into the variational form

-

Seek A,u = 0 satisfying
(3.23) {u e Hé(o,l)
a(u,v) = Ab(u,v), V v = Hé(o,l),
where
1
a(u,v) = J (au'v’ + cuv)dx
0
and
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1
b(u,v) = [ uv dx
0

are bounded bilinear forms in Hé*Hé. An alternate formulation

is
Seek 1, O = u =<« L2(O,1) satisfying
(3.24)
al(u,v) = lbl(u,v), Vve H2(O,1) 8 Hé(O,l),
where
1
a,(u,v) = [ u{-(av’)’ + cv]dx
o
and
1
b,(u,v) = J uvdx
0

are bounded bilinear forms on L2*[H2(0,1) g Hé(o,l)]. (3.23) and
(3.24) are equivalent in the sense that (A,u) is an eigenpair of

one if and only if it is an eigenpair of the other.

Another formulation is obtained as follows. If we let o =
au’, then (3.22) can be written as a first order system of equa-
tions,

-0’ + cu = Ay
(3.25) w -2 =0
u(0) = u(1) = 0.

(3.25) can then be given the variational formulation,

Seek 1, (0,u) =« L2(0,1)vHé(O,1) satisfying
(3.26)

a,(0,u,%,v) = Ab,(v,u,¥,v), V(r,v) - L,(0,1)-H (0.1),
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where
1 -
S = = oy
az(d,u,w,v) = [ {ov' + cuv + u'yp - E_)dx
0
and
1
b,(o,u,p,v) = [ uvdx.
0
a, and b2 are bounded bilinear forms on szﬂé. (3.22) and

({3.25) are equivalent in the sense that if (A,u) 1is an eigenpair
of (3.22) and o = au’, then (A,(u,0)) 1is an eigenpair of
(3.25), and if (A,(o,u)) is an eigenpair of (3.25), then (1,u)
is one of (3.22) and o = au’. (3.25) and (3.26) are called m;ggg

formulations of the eigenvalue problem (3.22); see Section 11. We

can also write (3.22) in the form

(0,u) € L,(0,1)xH (0,1}, (o,u) = (0,0)

(3.27) A(o,») + B(p,u) = 0, V p € L2(0,1)
1 1 _ 1
B(o,v) - J cuv dx = I—A uv dx, VvV v € Ho,
0 0
where
1 —
= | 9%
A(c,p) = [ a dx
0
and
1
B(o,v) = —J ov' dx.
0

In Chapter III we will consider further examples of variation-
al formulations and show how they can be used to define a variety

of finite methods.
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Section 4. Properties of Eigenvalue Problems

In this section we discuss the basic properties of eigenvalue

problems. As in Section 3 this discussion will be in terms of

2"?  order elliptic eigenvalue problems.

We thus consider the problem (3.1) in variational form:

ey

l“.

{Seek A, 0% ue H satisfying

CaV W oy 8

a(u,v) = 1b(u,v), v v € H,

=
’

where H = Hé(Q) for Dirichlet boundary conditions and H = HI(Q)
for Neumann conditions. The forms a(:,*) and b(*,*) are assumed

to satisfy

I 1]
(4.2) la(u,v)!| < Cl.lulll’Q..Vll1 vV u,v e H,

Q7

I |
(4.3) Ib(u,v) | Cyrltully olvi V u,veH,

0,0’
and

(4.4) Re a{u,u) = aHuui VvV u € H,

Q7

where a > 0. Sufficient conditions for (4.2) - (4.4) to hold

were given in Section 3; cf. (3.15) - (3.17).

For the study of (4.1) it is useful to introduce the operator

T : H(Q) — H defined by

Tf € H

a(Tf,v) = b(f,v), V v e H.

T 1is the solution operator for the boundary value (source) problem

(4.6)
Bu O on T,

{Lu df in ¢

solves (4.6). Thus T 1is the inverse of the dif-

42

- .~ " . \ B N S N st e, I T S
T A T T B N T g A A I e N N O N A O



P hA
N,

e

me

LY

X 2

v voae,
. "JI ..

b

-
.
-

O

ferential operator L, considered on functions that satisfy the
boundary conditions. It follows immediately from (4.2) - (4.4)
and the Riesz representation theorem in the special case in which
a(*,+) 1is an inner product on H or the Lax-Milgram theorem {(Lax
and Milgram [1954]) in the general case, that (4.5) has a unique
solution Tf for each f = HO(Q) and that

c

(4.7) L TE! —

2 0
b1,0 < aiflg o0

vV £fe H (Q),

i.e., T : HO(Q) — H is bounded. 1In Section 2 we noted that H
is compactly embedded in HO(Q), provided I 1is Lipschitz con-
tinuous (Rellich's theorem). From this fact and (4.7) we see that
T : HO(Q) — HO(Q) is a compact operator. We can alsoc view T
as an operator on H; we will, in fact, mainly consider T on
H. Another application of Rellich's theorem shows that T : H — H
is compact.

It follows immediately from (4.1) and (4.5) that (\,u) is

an eigenpair of (4.1) (or of L) if and only if

Tu = %u, u= 0,

i.e., if and only if (u = l—l,u) is an eigenpair of T. Through

this correspondence, properties of the eigenvalue problem (4.1)

can be derived from the spectral theory for compact operators. A
complete development of this theory can be found in Dunford and
Schwartz [1958, 1963)]. We now give a brief sketch of it; a slight-
ly more complete treatment is given in Section 6. We present this

theory under the assumption that the space H 1is complex. This

leads to the simplest general statement of the theory. 1In the
special case in which T 1is selfadjoint, H can be taken to be
43
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real or complex. We will specialize to the selfadjoint case later.

Denote by p(T) the resolvent set of T, i.e., the set
p(T) = {z : z €« C = the complex numbers, (z—'l‘)—1
exists as a bounded operator on H},
and by oJ(T) the spectrum of T, i.e., the set o(T) = C\p(T).

o{(T) 1is countable with no nonzero limit points; nonzero numbers
in o(T) are eigenvalues; and if zero is in o¢(T), it may or may
not be an eigenvalue. Let 0 = pu € o(T). The space N(u-T) of
eigenvectors corresponding to u is finite dimensional; its
dimension is called the (geometric) multiplicity of u.

Now suppose L 1is formally selfadjoint. Then it follows

immediately from their definitions that a(u,v) and b(u,v)

satisfy

(4.8a) a(u,v) = a(v,u), V u,ve H,

(4.8b) b(u,v) = b(v,u), V u,v e HO(Q),

i.e., a and b are symmetric (or Hermitian) forms. Thus from
(4.2) - {(4.4) we see that a(u,v) is an inner product on H that
is equivalent to ((u,v))l'Q. In a similar way we see that b(u,v)
is an inner product on HO(Q) that is equivalent to (u,v)

0,Q
(recall that d(x) 1is bounded above and is bounded below by a

positive constant). It follows from (4.8) that

(4.9a) a(Tu,v) = a(u,Tv), v u,v € H,
0
(4.9b) b(Tu,v) = b(u,Tv), V u,v € H (Q),
i.e., T, considered as an operator on H, is selfadjoint with
respect to af(u,v), and, considered as an operator on HO(Q), is
selfadjoint with respect to b(u,v). (We have previously noted in
44
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(3.10) that b(é Lu,v) = b(u,é Lv) if u=v =0 on T or if

g% = g; =0 on I, provided L is formally selfadjoint.)

From the fact that T is selfadjoint on H it follows that
the eigenvalues of T are real and the eigenfunctions correspond-
ing to distinct eigenvalues are orthogonal with respect to af{u,v).
We noted above that T 1is compact on H and it follows from
(4.5) that T is positive definite. Thus T will have a count-

ably infinite sequence of eigenvalues

0 oz e s u2 < “1

.('- ‘,' /‘ o

s

e

.{l /l
o

and associated eigenfunctions

v

ul,uz,..

which satisfy

a(ui,uj) = Aib(ui,uj) = 6ij'

It is further known that the eigenfunctions are complete in

L2(Q), j.e., that

L]
{l
Ly

-{l

A

0
(4.10) u = ZCjuj, ¥V u = LZ(Q)'
J=1

P
»

L]
5 5

where

4.11 ¢, = b(u,u;) = duu, dx,
{ ) j { J) l j
Q
and convergence is in either the Lz—norm or the
vYb(u,u). (4.11) converges in the H-norm for u = H,.

.,,
RN

1]

Now the spectral properties of (4.1) (or of L) can be

Lol
-~ ‘u‘"/ e

inferred from these facts by recalling that the eigenvalues of

ot
»

LS

{4.1) (or L) are the reciprocals ot those of T and that (4.1)

¥,

and T have the same eigenfunctions. Thus, if L 1is formally

oy




selfadjoint, then (4.1) (or L) has eigenvalues hﬁ?

(4.12) 0 <A, <A, s ... /" +® e

and corresponding eigenfunctions

A
(4.13) u, U,

satisfying o,

) = 6 ' _'b."i

(4.14) a(ui,uj) = lib(ui,u ij° ;*ﬂ

J

In the sequence 11,12,..., eigenvalues are repeated according to

their (geometric) multiplicity. The properties of eigenvalues and

PN
v

[ I~
eigenfunctions used in Section 1 in the discussion of separation Q(‘
of variables (cf. (1.11) - (1.15)) all follow from the properties 5=

.
we have sketched here. A0

nd I\ :_

Although our discussion has been in terms of 2 order

elliptic problems, it it immediate that the results hold for any

s

e

eigenvalue problem in variational form provided the bilinear forms

¥ 4
P4
)
Iy P T T ]

are symmetric and satisfy (4.2) - (4.4). We will refer to this as

i3
KPP S

2%

%)

the selfadjoint, positive definite case. 1In Section 8 this, as

o ok

.
gt
by |

well as a more general, class of variationally formulated eigen-

%)
IO

MY

value problems is discussed.

Remark 4.1. The eigenvalues of selfadjoint eigenvalue problems

are real and the eigenfunctions may be taken to be real. Thus

these problems may be formulated in terms of real function spaces.
Nonselfadjoint eigenvalue problems, on the other hand, may have
complex eigenvalues and complex eigenfunctions, and are formulated
in terms of complex spaces.

We end this section with a discussion of the regularity of

the eigenfunctions of the an order elliptic operator L. L is
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not assumed to be formally selfadjoint here.

Theorem 4.1. Suppose for k : 2,

« T = 0Q is of class Ck,
Ck—l

b o ol g 4 P

+ a,.,b, = (), and
ij'-i
p c,d = Ck_z(ﬁ).
Then all eigenfunctions of L (see (3.2)) lie in Hk(Q) and
ll k/2 : .
uj'k,Q S C&j ‘uj”O,Q' j=1,2,.
; Proof. This result is a direct consequence of standard results cn

the regularity of solutions of elliptic boundary value problems.

In particular, we refer to Agmon [1965, Theorem 9.8].

Theorem 4.2. Suppose

- T is of class Cn, and

Then u, = c“(d) for j =1,2,.

Proof. This result follows directly from Theorem 4.1.

Theorem 4.3. Suppose

: + T =90 is analytic, and

. aij'bi'c'd are analytic on Q.

Then ug is analytic on ¢ for each j.

Proof. For a proof of this result see Morrey [1966, Section 5.7].

In practice most of the domains of interest have piecewise

N analytic boundaries. Let us mention a result for such domains.
.
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Theorem 4.4. Suppose

+ Q c R2,

+ T is piecewise analytic, and
. aij’bi'c'd are analytic on Q - (vertices of Q).
Then every eigenfunction of L is analytic in @ - U (vertices),

and moreover, belongs to the space Bg(o), for properly chosen 8.

Proof. This theorem follows from the results in Babuska and Guo

(1987a].

]

Remark 4.2. Assume that Lu = -Au, Q@ is a polygon, and the bqun-
dary conditions are of Dirichlet type. If Q is a convex poly-
gon, then the eigenfunctions u € H2(Q), and if Q is a noncon-
vex polygon, then u € ﬁk(Q) 2] Hé(Q), where k = §+1, with a
the maximal interior angle of the vertices of Q.

For a comprehensive treatment of regularity results for prob-

lems on domains with corners, we refer to Grisvard [1985].
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Section 5. A Brief Overview of the Finite Element Method for

Eigenvalue Approximation

In this section we give a brief overview of the use of finite
element methods for approximating eigenvalues and eigenfunctions
of differential operators. We will restrict the discussion to a
simple model problem in one dimension and its approximation by the
simplest type of finite element method.

Consider the selfadjoint eigenvalue problem

(Lu)(x) = —-(a(x)u')’ + c(x)u = Ad(x)ju, 0 < x < ¢

(5.1)
u(0) = u(1) = 0,

where a € cl[o,e], c,d € CO[O,f], and

0 < a0 < a(x), 0 < ¢c¢(x), and O < do < d(x) for O < x < £

(cf. (3.1) - (3.4)). As indicated in Section 3, this problem has

the variational characterization

~ 1
u < HO(O,K)

(5.2) 1
a(u,v) = Ab{(u,v), V v € HO(O,f),
where
£
a(u,v) = [ a(x)uvdx
0
and
4
b(u,v) = J duvdx.
0

(6.1) (or (5.2)) has a sequence of eigenvalues

O<X1\f.../’+<x>
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and corresponding eigenfunctions

ul,uz,...

satisfying
£

A, [ d{x)u.,u.dx = &
i i7j
0

ij’

Oon [0,¢f] consider an arbitrary mesh

= = < . e e =
A {0 X, X, < < x £},

where n = n(A) is a positive integer, and let

S, = {u : ue C{0,£], u(0) = u(£) =0,
u is linear on Ij’ j=1,...,n},
where h, = x. - x, and I, = (x C X for j = 1,...,n
J J j-1 J ( j-1 J) J
and h = h(A) = max hj' Sh is an (n-1)-dimensional subspace of
J

Hé(o,f). The pairs (),u) have been characterized in (5.2) as
eigenpairs of the bilinear form a(u,v) relative to the form
b(u,v) over the space Hé(o,f)wﬂé(O,E). We now consider eigen-
pairs of a(u,v) relative to b(u,v) over the space Sh‘sh'

i.e., we consider the eigenvalue problem,

Seek lh‘ 0 = u = S satisfying

h TN
Lo &
’5 'i RIS

PO
:5‘-5'-

[ ]

}'1
5

5
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il g o
o

Y
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«

o,
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7
A, 0N
«
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' i

s

o

s
o,

et

(5.3) h RN
= < LA S

a(uh,v) khb(uh,v), Vv u <« Sh’ ﬁ?iﬁ

NN

and then view the eigenpairs of (5.3) as approximations to those AN
of (6.2). (*_ ,u. ) is called a finite element (Galerkin) approxi- EES\
h h W

RS SAN

mation to (X,u). A wide variety of finite element methods for .giyt
:\-"."\

eigenvalue problems will be introduced and analyzed in Chapters WA

III. Here we will outline the general features of these methods

by examining the method (5.3) as it applies to (5.1).
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Since Sh is finite dimensional, (5.3) is equivalent

generalized matrix eigenvalue problem. In fact, if O e

PP

is a basis for S

NS Y

ne then it is easily see that

s

h' “h

hY
P4

‘x'.\,'z

is an eigenpair of (5.3) if and only if

ol

[AE = \. Bz
(5.4) h

with A,
i

with B, .

(5.3) (respectively, (5.4)) has eigenvalues

and corresponding eigenfunctions

n-1.h (respectively, j.h

]
satisfying
¢

, . -T ~
A, . . . . . . . = &,
i h dul,huj'h dx " 13 (respectively, \1,h21,hBZJ,h 1j).
0

We further note that if we choose as basis functions the usual! hat

functions determined

then A and B are sparse; in fact, they are tridiagonal. We

easily see that the three nonzero diagonals are given by




I' \’
X X AR
L o-p [i%1 L -qp [ i%t {
= -h. h. .| Y ~ -
(5.5a) Ai,i+1 hi hi+1? a(x)dx+hi hi+1J (xi+1 X) (X xi)c(x)dx
J
X. X.
1 1 o

X, X,
-2

i -2 i+1 o
(5.5b) Aii = hi J a{x)dx + hi+1[ a{x)dx AT,

L% {
X. X. I o)
i-1 i

..' A
v
d2

- i+1 ’ .
+ h, J (xi+1—x) c{x)dx, e

=
i
(oY
o -" )"‘l“
[ f "
e g e

TSN

'

i
(5.5c) A, . = -h," . h, J a(x)dx

PR

(4

[y
|
[
> T, ¥
AR
I;‘_' R
VR

g
v

’.‘n

P4
’

o
2 5

e
»

b
b
L4

(5.6a) B. . = h, h
. 2 -2
(5.6b) B, . = h, J (x-x;_,)°d(x)dx+h J (x.

(5.6¢) B. . = h

Now we specialize (5.1) to the vibrating string prcoblem dis-
cussed in Section 1, i.e., we let a(x) = p = the tension of the

string, c(x) = 0, and d(x) = r = the density of the string. We

also suppose the mesh is uniform, i.e., we let X, = ifn—l; we
then have h = hi = fn_l. It is easily seen from (5.%5a) - (5.6c¢)
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that
2 -1
-1 2 -1
-1
(6.7) A = ph
0
S
and
4 1
4 1
_rh ’
({5.8) B = =
o 1
If the integrals defining the Bij

zoid quadrature rule, then instead of

obtain the matrix

(5.9) B = rhl

and instead of (5.4) we would have

(5.10)

\
0
2 -1
-1 2]
)
0
4 1
4

are approximated by the trape-

the matrix B we would

We finally note that the eigenvalues and eigenvectors of

(5.4) and (5.10) can, in this special

The eigenvalues of (5.4) are given by

U

J

(5.11) 1 6h™%(1- cos

j.h

and those of (5.10) by

~

Aj,h

= 2n"72 jnh

(6.12) v

(1

coOSs

The unnormalized eigenvectors of both
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h
T) (2+ cos
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case, be explicitly found.
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T
(5.13) | zj,h = (zj,l,h' "zj,n—l,h) .
where
(5.14) 2, = sin J"?h, j.ok =1,2,...,n-1.

The eigenvalues and eigenfunctions of (5.1), in this case,

are given by

2 2
(5.15) AL, = 3 g P 5 =1,2,3,...
j ¢2y
and
(5.16) uj(x) = /é% sin l%ﬁ, j=1,2,...

From (5.11) and (5.15) we see that

4 4 6 6
(5.17) S W nls 3" B nt+... = o(n?)
3.0 ) qope 360r¢

and from (5.12) and (5.15) we see that

4 4 6 6
(5.18) Ny = jm B h? - RPN - nt+... = o(n?).
' 12r¢ 360r¢

From (5.13), (5.14), and (5.16) we see that, neglecting the nor-

malizing factors, the eigenvector z consists of the values of

j.h

2,...,}(

(5.17) shows that the eigenvalue error

uj(x) at x = X)X n-1°

A -2, is oO(h"}).
j.h j (h™)
Thus the small eigenvalues of (5.3) (or of (5.4)) appro::imate the

eigenvalues of (5.2), but the larger ones do not since \j,h_\j

is small only if j2h is small. If, for example, j - nl/z,

then j2h is of order one and we would not expect \j,h_\' to be
small. Thus only a small percentage of the eigenvalues of (5.4)

are of interest. This observation influences the selection of

numerical methods for the extraction of the eigenvalues of (5.4).
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We also note that (5.17) and (5.18! sh that 1. < A, < A, RN
( ) ( ow j.h ; j.h i
for h small. It is known that A, < 1 _ for all h; cf.
, J j.h bt
(8.42). O
|‘r'\'&h
;-\."\
A Physical Interpretation of the Finite Element Eigenvalue Problem 3?
(5.10) A
» o
We consider here the vibration of a weightless elastic string :ﬁfﬁ
e
' loaded with several point masses. Suppose we have a weightless Lol
o
elastic string of length ¢ 1loaded with n-1 particles of mass R
- - - ':'/‘:'I'
Y m at distances ¢n 1, 24n 1,...,(n-1)£n 1 from one end and fixed :3;:
,“‘.».‘.
at both ends. Gravity is assumed to be negligible and the par- ;ﬁ.,
i(!_l..
ticles are assumed to move in a plane. We shall study the small VOEY
,.-._'\.
free vibrations of this system of n~1 degree of freedonm. :ﬁﬁﬁl
RN
Let p denote the tension in the string and let h = fn_l. ﬁ%ﬁ
If qi(t) denotes the vertical displacement of the ith particle, Eo
]
the particles being numbered from the left (see Figure 5.1), then {{};
n‘\\-'.
the equation of motion for the iLh particle is easily seen to be .iiﬁ
s —2q.+q.+ RN
(5.19) -mgi(t) = -p ——2 1 ¥y oy 2, ..., 01,
i h
where we assume dg = 9, = 0.
A
q
0 | 2 3 4 n-2 n-l n
; 1 ] ] i W ] | I
‘ g2} X

lA

Figure 5.1. ElAastic String with Point Masses.
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If we seek separated solutions of the form

.;.'.;.r X
Py
o

3
]
4,

[

a,(t) = z,q(t)
q,_,(t) =2z _,q(t) iy

or, in vector form,
- -
q(t) = zq(t),
in which the (discrete) spatial variable Jj and the temporal

variable t are separated, we find that

Z, -2Z2.+Z,

v = _ i-1 i 7i+l
mz.q" (t) P " q(t)
or
o Zi-17%23%254
_ h _ q“(t) X
mz, TSN for all i and t.
LN
Both members of this equation must egual a constant, which we e
e
denote by A. We are thus led to seek (K,E = 0) such that lﬁ}j}
~‘:h$"',~v'
2 - - = i = - 4
h( z;_ 4 * 2z zi+1) lmzi, i 1,...,n-1, SRR

i.e., to seek eigenpairs (X,E) of the matrix

r N
2 - 0
- 2 -1
-1
(5.20) ph
0 -1 2 -1 ..\;.
.\{
o - 1 2 J :- ;
S
:_\:'\
relative to the matrix mI, and, for each eigenvalue 1}, solu- LpTaS

tions to the differential aquation
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(5.21) g”’(t) + Ag(t) = 0, t > 0.

The matrix (5.20) is positive definite. Thus it has n-1

eigenvalues
0 <« kl,h < k2,h < < ln—l,h
and correspcnding eigenvectors zllh,...,zn_l,h, which satisfy
L m;? z =6

i,h ""i,h ®j,h ij°

-d - . .
Zl,h' .oy zn—l,h thus form an orthonormal basis (i.e., are

complete) in (n-1)-dimensional space. Corresponding to \j h'

the solutions of (5.21) are glven by
t) = g.(t) = in YA t4+0 ),
q(t) qJ( ) a4y sin J,h( j)

where aj and Gj are arbitrary. Thus the separated solutions

are given by

5.22 z. . sin /7. (t+0.), j =1,...,n-1.
( ) zy p2j sin /—;T;( g1 3

As with the vibrating string, it is easily seen that all solu-
tion of (5.19) can be written as the superposition of the separated

solutions (5.22). These simple motions are called the eigenvibra-

tions. The components of the th eigenvibration all vibrate with

some circular frequency /lj h and phase displacement /\j hej'
and the components are proportional to the components of Ej he
.t h

Thus ¢y is the frequency and z the shape of the j

j.h

eigenvibration.

j.h

A complete discussion of the vibration of a weightless elastic
string loaded with several point masses can be found in Courant-

Hilbert [1953] and Synge and Griffith {1959].
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We now draw a parallel with the finite element problem (5.10).

It follows immediately from (5.7), (5.9), and (5.20) that the
eigenvalue problem that we obtained, i.e., the problem of finding
the eigenpairs of the matrix in (5.20) relative to mI, is iden-

tical to the eigenvalue problem (5.10) provided m = rh = rfn_l.
We have thus arrived at the following physical interpretation of

(5.10): Consider the problem of a vibrating string with density

r and tension p. Divide the total mass rf€ of the string into

n-1 particles of mass m = ren_l, which are placed at the points
Xys-+..%X, 4, and two particles of mass r£(2n)-1, which are
placed at X, and - Then the eigenvalue problem corresponding

to this system is identical to the problem (5.10) arrived at by
approximating (5.2) by the finite element method (5.3), and then
approximating the matrix B by B via the trapezoid rule. Thus
the finite element eigenvalue problem (5.10) is the same as the
eigenvalue problem that arises when the mass of the string is
"lumped" as indicated above.

The matrix A in (5.7) is called the stiffness matrix and B

in (5.8) is called the mass matrix. Because of the physical anal-

ogy we have noted, B is called the lumped mass matrix and, in

contrast, B 1is sometimes referred to as the consistent mass

matrix.
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CHAPTER II. ABSTRACT SPECTRAL APPROXIMATION RESULTS

In this chapter we present the abstract spectral approximation

results we will use in the sequel.

Section 6. Survey of Spectral Theory for Compact Operators

Since the differential operators we consider have compact
inverses, our approximation results will be developed for the
class of compact operators. We turn now to a survey of the spec-
tral theory of compact operators. A complete development of this
theory can be found in Dunford and Schwartz [1963, Section XI.9].

Let A : X — X be a compact operator on a complex Banach
space X with norm -1, = l-lf. We denote by p(A) the resol-

vent set of A, i.e., the set

-1 .
p(A) = {(z : z € C = the complex numbers, (z—-A) exists

as a bounded operator on X},

and by o0(A) the spectrum of A, i.e., the set o(A) = C\p(A).
For any z < p(A), R (A) = (z-A)~! is the resolvent operator.
o(A) is countable with no nonzero limit points; nonzero numbers
in O(A) are eigenvalues; and if zero is in O0(A), it may or may
not be an eigenvalue.

Let 4 € o(A) be nonzero. There is a smallest integer «,
called the ascent of u-A, such that N((z-A)%) = N((u-2)*1),

where N denotes the null space. N((u-A)a) is finite dimension-

al and m = dim N((u-A)a) is called the algebraic multiplicity of

#. The vectors in N((u—A)O) are called generalized eigenvectors

of A corresponding to 4. The order of a generalized eigenvec-
)3y

u is the smallest integer j such that u = N((/-A The

t
0
]

|
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generalized eigenvectors of order 1, i.e., the vectors in -,jl
F~f\
ol
N(#-A), are, of course, the eigenvectors of A corresponding to ald
#. The geometric multiplicity of u 1is equal to dim N(ux-A), and E:E
-‘\) :
is less than or equal to the algebraic multiplicity. The ascent :’:-t.{\
J-"'"
)
of u-A is one and the two multiplicities are equal if X is a paNe
Ul
Hilbert space and A is selfadjoint; in this case the eigenvalues ;:;-f
e,
are real. If y 1is an eigenvalue of A and f 1is a correspond- E:*
ing eigenvector, we will often refer to (u,f) as an eigenpair of R
VN
A. "‘.’I’;?
F.l',l
Throughout this section we will consider a compact operator AL
Sy
I.
T : X — X and a family of compact operators Th : X — X, 0 <h ""7.
2
< 1, such that Th—-» T in norm as h\ 0. Let 4 be a non- :'\-
s
zero eigenvalue of T with algebraic multiplicities m. Let T :.;j:
Tn
be a circle in the complex plane centered at pg which lies in A
; S,
p(T) and which encloses no other points of o(T). The spectral ZE:*"
projection associated with T and u is defined by ] ‘.&‘
v
- -1 iy
E = E(u) = TE J RZ(T)dz. :{_:
r .-?_.f
;\'i-\.'
Ayt
J' '
E 1is a projection onto the space of generalized eigenvectors oy
associated with g and T, i.e., R(E) = N((u-T)a), where R :3::2
A
AN
denotes the range. For h sufficiently small, T < p(Th) and r}_:
T
the spectral projection p\\‘;_
1 | il
E = ny = — T
h - ERl) T gy Rp(Ty)d2
Jr '.'
exists, Eh converges to E in norm, and dim R(Eh(,u)) = SRR
dim R(E(y)) = m. E  1is the spectral projection associated with I:;Ii'-
-'\.;;
Th and the eigenvalues of Th which lie in ! and is a projec- :fj'.-}
00D
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N
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tion onto the direct sum of the spaces of generalized eigenvectors

corresponding to these eigenvalues, i.e.,

Q.
- E _ M (h)

N(h)eo(Th),u(h) inside T

where a“(h) is the ascent of u(h)—Th. Thus, counting according
to algebraic multiplicities, there are m eigenvalues of Th in
'; we denote these by ul(h),...,um(h). Furthermore, if I’ is

another circle centered at p with an arbitrarily small radius,

we see that ul(h),...,ym(h) are all inside of I''" for h suf-
ficiently small, i.e., 1lim pu.(h) = u for 3j =1,...,n.
h0 9
R(E) and R(Eh) are invariant subspaces for T and Th’
respectively, and TE = ET and ThEh = EhTh.' {Rz{Th} :ze« T, h

small} is bounded.

If 4 1is an eigenvalue of T with algebraic multiplicity
m, then x 1is an eigenvalue with algebraic multiplicity m of
the adjoint operator T on the dual space X'. The ascent of

+

M-T" will be a. E will be the projection operator associated

with T and u; likewise EA will be the projection operator

associated with Tﬁ and ul(h),...,um(h). If fe X and £ <«
X', we denote the value of the linear functional f' at f by
<f,f'>.

T° here is the Banach adjoint. If X = H is a Hilbert

*
space, we would naturally work with the Hilbert adjoint T

!

which acts on H. Then u would be an eigenvalue of T if and

- *
only if p is an eigenvalue of T

Given two closed subspaces M and N of X, we define

W \J J g <

RN
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5(M,N) = sup dist(x,N) and O6(M,N) = max(5(M,N),5(N,M)). &(M,N)
X<M
Txi=1

is called the gap between M and N. The gap provides a natural
way in which to formulate results on the approximation of gener-

alized eigenvectors. We will need the following

Theorem 6.1. If dim M = dim N < ®, then

5(N,M) < &(M,N)[1-5(M,N)] 2.

For a discussion of this result and the result that & (N,M) =
5(M,N) if X =H is a Hilbert space and &(M,N) < 1, we refer

to Kato [1958].

.’.-(-,--, R - - -..-.- - R . " e - S T . -_-»:\_- " 4...’-" - ..\-
RIS AT A s A A I NN Ty WD IFAT RN NN

(39N " VAN S
SO RRR

[4
»

5
B4
o',

[ 4

%

U

15%% Yy
Py

-"-_'
, Y

“x
'y
P
e
v 'y

v,
[}

o

r v ¥
(XA
" "

t’-.-

L R AR A S
IO )

g
3

>
-~
.

N

NN
AN A

"'t

A
P A
\'r.‘r'-'vﬂ
L}

I's

-
]

»

,l/ ,l,q *
A

PLAS




P

C e . . “ .
D N N Rt i RO R

Section 7. Fundamental Results on Spectral Approximation

In this section we present estimates which show how the
eigenvalues and generalized eigenvectors of T are approximated
by those of Th' Estimates for this type of approximation were
obtained by Vainikko (1964, 1967, 1970], Bramble and Osborn [1973],
and Osborn [1975]; our presentation follows Osborn [1975]. We
refer also to Chatelin [1973, 1981], Grigorieff [1975 a,b,c],
Chatelin and Lemordant [1978], Stummel {1977], and tu the excellent
and comprehensive monograph of Chatelin (1983)]. Let u be a non-
zero eigenvalue of T with algebraic multiplicity m and assume
the ascent of u-T 1is a. Let ul(h),...,ﬂm(h) be the eigen-

values of Th that converge to .

Theorem 7.1. There is a constant C independent of h, such

that

(7.1) 8(K'E),R(E)) < CE(T-Tp)|g gl

for small h, where (T-Th)IR(E) denotes the restriction of

T--'I'h to R(E).

Proof. For f € R(E) with |ifi = 1 we have |{f-E fi = Ii(E-E_)f!

h

< UE-EhU. Thus, since Eh converges to E in norm,

h

lim 5(R(E),R(Eh)) = 0. Using Theorem 6.1, with M = R(E) and
h-0

N = R(Eh), we thus have

5 (R(Ey) ,R(E)) = &(R(E),R(E,))[1-5 (R(E),R(E,)] "

s 26(R(E),R(Eh))

and hence

(7.2) 8(R(E),R(Eh)) = 25(R(E),R(E ))
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for small h.

Now for f € R(E) we have

= 2 -
HEf—Eth = lza71 J [RZ(T) Rz(Th)]fdzH

r

Hf-E, £l

h

T ] Rz(Th)(T-Th)Rz(T)fdzd
r

and hence, recalling that R(E) is invariant for T and thus for

R, (T,

1 HERT|
(7.3) HE-E flii<5 length(l) supHRz(Th)HH(T—Th)lR(E)H supiiR_(T)hi# £,
2€r zeTl

As noted above, sup HRZ(Th)H is bounded in h. Thus from (7.2)
zel

and (7.3) we have

where
¢ = 2 length(r') sup IR_(T_)! sup {R_(T)!.
zel zel z
0<h

Remark 7.1. The proof of Theorem 7.1 also shows that

IE-E ) [g(gy+ ¢ CH(T-Ty) |R(E)i!.

Although each of the eigenvalues ul(h),...,um(h) is close to
4 for small h, their arithmetic mean is generally a closer ap-

proximation to u (cf. Bramble and Osborn [1973]). Thus we define

m

- 1

M(h) = = Z/-Ij(h)-
j=1

Out next theorem gives an estimate for (-p(hj}.
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Theorem 7.2. Let ¢1,...,¢m be any basis for R(E) and let
@i,...,¢h be the dual basis in R(E'), as defined in the proof
to follow. Then there is a constant C, independent of h, such
that

(7.4) Iu—&(h < (T - )

j,os>|+c;(T—Th)\R(E) "R(E')

S
u[\/]a

Proof. For small h, the operator R(E) —qR(Eh) is

EnlR(E)

one-to-one since iE—Ehh —-~» 0 and Ehf = 0, £ = R(E) impiies

is onto since
-1

CEo= :Ef—Ehft < TE-Eh:hf., and E

p) = dim R(E) = m. Thus Eh[R(E))
1 -1

» . > - - . 1
defined; we write Eh for (EhIR(E)) . For h sufficiently

th(E)

dim R({E R(Eh) — R(E) 1s

small and f = R(E) with I(f: =1 we have

1 - 'E fi = 'Ef¢ - {E_fi < [E-E_» : 1/2

h h °

and hence E fl : 1/2{f . This implies Eglj is bounded in h.

EhEgl is the identity on R(E and E_'E.  is the

h’ En En
. . . _ 1
identity on R(E). Now we define Ty, = BTy h|R E) R(E) —

We note that

R(E) .

Using the fact that R(Eh) is invariant for Th we see that

u(ih) = {ul(h),...,um(h)) and that the algebraic (geometric, res-

pectively) multiplicity of any uj(h) as an eigenvalue of Tr is

equal to its algebraic (geometric, respectively) multiplicity as

an eigenvalue of Th' Letting T = T'R(E)' we likewise see that

{T) = {p#}. Thus trace T = my and trace 'I‘h = myu(h) and, since

T and Th act on the same space, we can write
trace(T-T

(7.5) ji-(hy = ).

S

h
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o>

.
3 vt

Let ¢ ) be a basis for R(E) and let o ,...,0’ be

17" " m 1 m

the dual basis to o PO Then from (7.5) we get

¥ )
=

m
2: (7.6) u-u(h) = & trace(r-1) = 1 z<(i"—i"h)oj,¢'j>.

j=1
. . -
N Here each w5 is an element of R(E)}’, the dual space of R{E),
-, but we can extend each o3 to all of X as follows. Since X =
v R(E) % N(E), any f = X <can be written as f = g+h with g -
;i R(E) and h € N(E). Define <f,®5> = <g,03>. Clearly taﬁ, e
” extended, 1is bounded, i.e., @5 = X'. Now <f,(u—T’fﬁpj> =
2; <(u—T)af,o'j> vanishes for all f. This follows from the obser-

R(E) = N((u-T)") and

i

. vation that it obviously vanishes for f

1
i

it vanishes for f = N{(E) since N{(E) is invariant for pu-T.

1

Using the facts that ThEh = EhTh and En En is the iden-

ﬁ Thus we have shown that o ,...,o]'n = R(E).

o~ tity on R(E), we have

. - / 1 ’
' <,(T_Th)(bj®j> = <T(Dj Eh ThEhoj,oj)

(7.7) = <g g

. h Ep{T-T

h)tbj,oj)

%) ﬂ(>,

= <(T-Th)oj,o J.> + <(EhEh—I)(T—Th),j,.j

-1 . . .

) Let Lh = Eh Eh. Lh is the projection on R(E) along N(Eh)

N 4

o © j - = ' ( =

T Hence Lh is the projection on N(Eh) R(Eh) along RI(E)
N(E"). Thus

’

j> = <(L, ~-I){(T-T )o ,,(E'-E _)o'.>,

(7.8) <(E Eh—I)(T-T h' h'”

h )oj,o

h h

From (7.8), the boundedness of Lh' and Remark 7.1 (applied to
i T and (T[)) we have

D A VL R N U I I e I L T T A U SO e L N AT
N A - NS - - A A R Y
AR CEE SR AN AR AT AOAY A . SRR . R s




A

. | ! - - & o' >l i ~Th Vh -
(7.9) .<(EhEh I)(T 'rh),j,, j>. (sup,,Lh I )i (T 'rh)

.‘ h

« {E-E/) i Cag o
L(E Eh)'R(E') oj (oj Neg

| :
tR(E)' r\f

IA

CiAT-T) gy (T-Tp)lg(g) - N

Finally, (7.6), (7.7), and (7.9) yield the desired result.

M T
LA,
N Y A

a

I)(T-T

‘l"‘

n h)fbj,<l>j>,

which differs from that in Osborn (1975], was suggested by

Bemark 7.2. Our treatment of the term <(E5E

VA
A

ap

Descloux, Nassif, and Rappaz [1978b].

A
.\‘ ) ,'\e L,

h)

Remark 7.3. A slight modification of the proof of Theorem 7.2

Vo
N

l’f'f‘i

shows that for any 1 < i, j < m, |<(T-T,)¢_,¢ _>I is bounded by
j i

Céh, where

LR AL AT
LN

m

6h = }E I<(T—Th)¢j'¢i>‘ + i(T-Th)‘R(E)WQ(T—Th)LR(EWH.
i,j=1

e

v, 'd
2

Noting that <(T_Th)®j’®i> is a matrix representation of T—Th,

we see that

(7.10) wT—Th?: < C?)h.

- Since it is immediate that o

ltrace(T—Th)l x ‘T-Th<, Fi*

=l

lu-u(h)| =

-

>
«

from (7.10) we get

0
o
»
[d

(7.11) - (h) | < Co, . TR

, an estimate that is similar to, and of equal use in applications 4

L)
s
P’\-
r
as, (7.4). ﬁ.‘
~
~

We also have ¢
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. '—1_ -1
I R
= T (T h)Th
B R
s 1T “Th—T"Th
< C‘Th—T
Hence we see that
-1
o1 Lykg(h) N
(7.12) | u - —-nT—-——-l o Cuh.
It is also known that
(7.13) lu-u (n) ¢ < ciT-T,
. u “j s -
for any 1 < j <« m. Hence
a
(7.14) Iﬂ—ﬂj(h)l < Céh.

(7.14) is established directly in Theorem 7.3. We note, however,
that the proof of Theorem 7.3 is closely related to one of the

ways of proving (7.13).
Remark 7.4. It follows immediately from (7.4) that

|H‘HJ(h)| < C‘.(T—Th)lR(E)'

However, the second term on the right side of (7.4) is of higher

order than (T"Th)lR(E)" namely of order

“(T—Th)IR(E) ;(T—Th)lR(E)’. We will also see that in a large
m

variety of applications, :E:<(T-Th)oj'®3> is of higher order
Jj=1

than }(T_Th)lR(E)"

In addition to estimating w#-y#(h) we may estimate u-ui(h)

~

for each j.
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Theorem 7.3. Let < be the ascent of u#-T. Let ¢1,...,mm be
!I any basis for R(E) and let ol,...,¢m be the dual basis. Then
- there is a constant € such that
'\-f‘
i m

- RN | - ‘o
E (7.15) |p llj(h). C{ Z L<(T Th)¢i,(bj>.
Lo i,j=1
e 1/a -

% + (T Th)IR(E). AT Th)[R(E,) ) ‘ 1, M.
s Proof. For each h, uj(h) is one of the eigenvalues of Th' Let
Y
- . D .o e :

Thwh = uj(h)wh, W= 1. We can choose wh <= N((py-T")") in such
:’é a way that <wh,w1:1> = 1 and the norms i.i.wl’qi are bounded in h.

First, using the Hahn-Banach Theorem, choose wﬁ = R(E)" such
N that <wh,wh> = 1 and LWyl = 1; then extend Wp to all of X
ii as in the proof of Theorem 7.2, wﬁ, so extended will be in

R(E‘) and satisfy Lwﬁv < “E, . Now, noting that (T—u)awh = 0,
RS we have
o

(7.186)
R _ 1 - - a ,

{1 /lj(h)l P <(u /Atj(h)) wh,wh>l
.;‘ (¥} d
o _ _ o ‘
3;: u-1 _
= 1<) e (0) 3 =) T (b -y g

J j h’"h
L j=0
E a-1
. J =1-3
oy ‘ 1=y . {h <(p. . (h)y-T)w,_, (u-T W' >
S zzll #J( )17 (/J( ) ) h (¢ ) hl
) J:O
i{f 1-1
< EZIN—Nj(h)[J max !<(uj(h)_T)wh”V>' =T a=-1-j WB
= oo ®'-R(E"), o =1
w
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For any o’ = R(E') with ¢t =1,
(7.17)

- ! = l-_ ‘
I<(uj(h) T)w, .0">] [ <{T ~T)w, ,0">|

ENPNES | ) ,
= |<E_"E, (T, ~T)w, ,0">|

= 1 <(T-Ty)w,,0'> + <(E_'E,-T)(T-T )w_,0>]
€ PTmDwy 0>+ CT-Tp) [ geg)  (T-Tp) g (e
There is obviously a constant C° such that
m
(7.18) |<(Th—T)wh,¢'>[ s C Z [<(Th-T)ij,<D3>[
i,j=1
for all Wy € R(E}) and o' € R(E') with 4wh4 = ¢’ = 1, From

(7.16) - (7.18) we get the desired result. ‘

Theorem 7.1 shows how the generalized eigenvectors of T are

approximated by those of Th' Our next result concerns the proxi-

mity of certain elements of R(Eh) to certain elements of R{E).

It shows, for example, that eigenvectors of Th are close to

eigenvectors of T.

Theorem 7.4. Let u(h) be an eigenvalue of 'I‘h such that
lim x4 (h) = 4. Suppose for each h that Wy is a unit vector
h-0

satisfying (u(h)—Th)kwh = 0 for some positive integer k - «,

Then, for any integer ¢ with k « ¢ : o, there is a vector Uy
such that (u—T){uh'= 0 and

L _ C(f-kR+1)/a
(7.19) W =W C. (T Th)IR(E) .

P
Proof. Since N((#-T) ) 1is finite dimensional, there is a closed
€
subspace M of X such that X = N{{(y¢-T) ) + M. For vy
10
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|23

XL

¢

R4
.

)

A‘
<

X

v
<

s
L

4

>t

% S |

LA

, ‘o‘ =

£
R((u#-T) ),

¢
Thus (4-T) !M

£, -
(-1

theoren,

t}
the equation (#-T) x = y 1is uniquely solvable in

£
M — R((u-T) ) is one-to-one and onto. Hence

R((u—T){) — M exists and, by the closed graph

is bounded.

Thus there is a constant C such that

< C:(u-T)ffé for all f = M.

Set

along M. Then (u—T)eur = Q0 and w

(7.20)

u, = Pw

h h’

¢
where P is the projection on N((u-T) )

h—uh < M, and hence

W, —u < Ch(#—T)f(w

h hi’ h_uh) i

By Theorem 7.1 there are vectors u, < R(E) such that

h

fwp =y s CHIT-Ty ) g gy i

Hence there is a constant C” such that

(7.21)

Since k

(7.22)

Combining

4"-- L4 AN ATt

,08,4%. o

) e e
TS MR S
£-1
= uZ(u-ThH(T-Th)(;:—T)’f‘J‘l[(wh—Gh) + )
j=0
< C"i(T—Th)IR(E)c.
< 4,
e-1
(u-T ) S = ;2(5)( ~u(h)) 3 (u(ny-1, )3
=Ty ) Wy = j #=p(h))“(u(h) h) Wy
j=o
£
= Z () (= (n))y 3 (uny -1, ) 3w
' j h h
j=€-k+1
-
s " lpu-p(ny TR,
(7.20) - (7.22) we get
, {
wh—uh « C (p—=T) (wh—uh)
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S C%(N—T)Qwh
= Co [ (u=T) = (u=1p) “Iwp + (ueT ) G
< CLCH(T=Ty) |p gt + AT S o

The result now follows immediately from Theorem 7.3.

*

*
Remark 7.5. If X = H 1is a Hilbert space, we let T and T

h
denote the Hilbert adjoints of T and Th’ respectively. 1In
Theorems 7.2 and 7.3 we would let ®1""’®m be an orthonormal

* x* * * - LIy
basis for R(E) and let ¢j = E ¢j. Then ol,...,am < N((u=-T ) )
- = - = *
and trace (T—Th) = ZE:((T—Th)®j,¢j), where (+,*) = (-,-)H

denotes the inner product on H, and with only minor modifica-
tions all the results of this section remain valid.

We end this section by specializing the results in Theorems
7.1 - 7.4 to the case where X = H 1is a Hilbert space and T and
Th are selfadjoint. If u is a nonzero eigenvalue of T, then,
as noted above, the ascent a of u-T 1is one and the algebraic
and geometric multiplicities of 4 are equal. Likewise the
eigenvalues uj(h) of Th which converge to /i have equal alge-
braic and geometric multiplicities. u and yj(h) are, of
course, real.

Thus, under the present hypotheses, Theorems 7.2 and 7.3 give

the estimate

m
* 2 .
Iu-uj(h)l s C{ EE l((T—Th)oi,wj)I + ‘(T-Th)IR(E) Y, j = 1,...,m.
i, j=1
Now consider Theorem 7.4 in the selfadjoint case. Suppose
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#(h) 1is an eigenvalue of Th converging to #. If wh is a

unit eigenvector of Th corresponding to /(h), then it follows

immediately from Theorem 7.1 and the definition of #{(R(E),R(E
that there is an eigenvector uy of T corresponding tco y such
that

S, —W «~ C (T-T

h~ " n) (g

This is Theorem 7.4 in the case a = 1. We further note that one
may assume Huhi = 1. From Theorem 7.1 we can also conclude that
if u 1is a unit eigenvector of T corresponding to s then

there is a unit eigenvector Wy = R(Eh) of Th such that

u-w < C'(T-T

h n) IR(E)

Compare the discussion of the Ritz method near the end of Section

8.

Remark 7.6. 1In the selfadjoint case one may assume the Hilbert
space H is real (cf. Remark 4.1). Starting with a real space Y
we can in the usual way obtain a complex space by complexifying.

Then the contour integrals ;.I R_(T)dz and el?
2n i r 2 2ni

JrRz(Th)dz,
which are the fundamental tools in the analysis, can be introduced

and the results derived. The results will be in the complex

context but can immediately be translated to the real context.

Remark 7.7. Results for noncompact operators T which parallel

those in this section were proved by Descloux, Nassif, and Rappaz

(1978a,b]. See Subsection 13.D.
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Section 8. Spectral Approximation of Variationally Formulated

Eigenvalue Problems

As explained in Section 3, eigenvalue problems can be given
variational formulations. For the most part, we will consider
eigenvalue problems formulated in this manner. In this section we
will first sketch the functional analysis framework for variation-
ally formulated eigenvalue problems and then discuss their approx-
imation. Results of the type presented in this section specifi-
cally Theorems 8.1 and 8.3, were proved by Babuska and Aziz [19783,
Chapter 12] and Fix [1973] for the case of an eigenvalue with mul-
tiplicity one; in the general case they were proved by Kolata
[1978]. Our treatment is similar to Kolata's.

Let H1 and H2 be complex Hilbert spaces with inner pro-
ducts and norms (-,~)1 and *-41 (-,-)2 *-“2, res-
pectively. Let a(:,*) be a bilinear (or sesquilinear) form on

HI-H2 satisfying

(8.1) la(u,v)! <

(8.2) inf sup la{u,v)]|

u€H1 V€H2

gl =1 ity =
u‘1 1 v_2 1

supla(u,v)| > 0, ¥V v H2 with v = 0.
VEH1

The Riesz representation theorem and (8.1) imply that there

is a bounded linear map A from H1 to H2 such that a(u,v) =

(Au,v)2 for all u ¢ Hl' v < H2. The adjoint A" is a bounded

map from H2 to H1 satisfying a(u,v) = (u,A'v)1 for all u

{(8.1), (8.2), and (8.3) imply that A is an isomor-
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phism of Hl onto H2. In fact, in the presense of (8.1), (8.2)
and (8.3) hold if and only if A is an isomorphism, cf. Babuska
[1971] and Babuska and Aziz {1973, Chapter 5]. Using the fact that

A 1is an isomorphism if and only if A’ 1is an isomorphism we see

that in the presence of (8.1), (8.2) and (8.3) hold if and only if

(8.4) inf sup la{u,v)| = o > 0
VEH2 ueH1
v 2=1 ﬁuH1=1
and
(8.5) sup la{(u,v)| > 0, V u e H2 with u = 0.
V€H2

(8.2) and (8.3) (or (8.4) and (8.5)) are called the inf-sup con-

ditions.

Suppose H'Hi is a second norm on H which is compact with

1
respect to l-¢,, i.e., every sequence in H, which is bounded
in F°“1 has a subsequence which is Cauchy in %'“i. Let b(u,v)
be a bilinear form on Hlvﬂz satisfying
" IR A = &
(8.6) Ib{u,v)| = Cz‘ull“v‘2’ vV us=« Hl' v Hz.

We remark that in many applications the form b{(u,v) is defined

on W, <w where
1 72!

H)y = Wy,

H2 T W, with a bounded imbedding,

with a compact imbedding,

and satisfies

. | I < at gl v < e .
(8.7) Ib(u,v)! C2 ut v w us<w,u W,
1 2
1f ...y =v-- . then it is immediate that * | 1is compact
1
with respect to ‘°‘1 and that (8.6) holds.
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S It is shown in Babuska [1971] and Babuska and Aziz [1973, o

‘ Chapter 5] that (8.1) - (8.3) imply there are unique bounded :
g-‘

operators T : H1 — H1 and T, : H2 — H2 satisfying ¢

I's W)

% 8 T = b YVueH,6 VveH <3

he! (8.8) a(Tu,v) = b(u,v), u € H,, v e Hy, 1

g a(u,T,v) = b(u,v), Vu< H, VvsH,. 2

~ :\9

Furthermore w3

X o

:\' n.r . C:2 l . \7 ;5“
(8.9) i u,,1 < 5_“u“1' u € Hl' ;

v t;

B If uy is a bounded sequence in H, . then, since ;-ﬁi is t:

NG

» A

é- compact with respect to Ei-![l, we know here is a subseguence uj X
. i

that is Cauchy in H-Hi. It then follows immediately from (8.10), Ef

:J” e
I‘ .

o

applied to uj —uj , that Tuj is Cauchy, and hence convergent,
4 k £

in H,. Thus T : H1 — H is compact. It is immediate that

-
A

1 1 A
* e
a(Tu,v) = a(u,T,v). The operator T, is related to T , the ;“
"
ol ] * - o
(ﬁ usual adjoint of T on H,, by the transformation T = NT*A’l. o
.f t
* At
!' T and T, are compact. -
L 3
.F ..N
A complex number 1 is called an eigenvalue of the form a N
> relative to the form b if there is a nonzero vector u = H, &?
{'- -
called an associated eigenvector, satisfying ’
we (8.10) a(u,v) = ib(u,v), Vv e H2' -5
r: It is easily seen from (8.8) that (},u) satisfies (8.10) if and i-
only if ATu = u, i.e., if and only if (1_1,u) is an eigenpair 5;
- kY,
o
i: of the compact operator T. (8.10) is referred to as a variation- zp
I-‘~
f; ally posed eigenvalue problem (cf. (3.18)). The notions of ascent, 3_
generalized eigenvector, and algebraic and geometric multiplicities o
are defined in terms of T. The generalized eigenvectors of T :f
o
v
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corresponding to A can, however, be characterized in terms of the

forms a(*,*) and b(:,*}). uj is a generalized eigenvector of
order j > 1 if and only if a(uj,v) = lb(uj,v) + \a(uj‘l,v) for
all v e H2, where uj—1 is a generalized eigenvector of order
j-1. Since T, = A’_IT*A’, it is immediate that o(T,) = n(T*)

-1 J. _ a.-1 -1 _* 3 .
and that N({((x "-T_,)”) = A {N((r» =T )Y)}. From this we see that

the generalized eigenvectors of T, have a similar characteriza-

tion to those of T, namely, a(u,vJ) = lb(u,vJ) + ta(u,vj—l) for
all u = Hl' In particular, (X_l,v) is an eigenpair of T, Iif
and only if a(u,v) = Ab(u,v) for all u = Hl' i.e., (»,v) is

an adjoint eigenpair of (8.10}).

In order to construct approximations to the eigenvalues and

eigenvectors of (8.10) we select finite dimensional subspaces

Sl,h‘: H1 and S2,h - H2, indexed by a parameter h, that sat-
isfy
(8.11) inf sup la(u,v)| =z 3 =3(h) > 0

usS) n VEHy h

1 o= Syt =

‘a 1 1 v 2 1
and
(8.12) sup la{u,v)| > 0, for each v = 82 h with v = 0.

utsl’h
We also assume
(8.13) for every u £ H,, lim '.?(h)—1 inf ‘u-pi = 0,
1 h-0 1=S .
"“1,h

We note that if dim S1 h = dim 82 h' then (8.12) follows from
(8.11), We assume dim S1 h = dim 32 h for the remainder of this
article. S1 h and S2 n are referred to as test and trial

spaces, respectively, and, if they consist of piecewise polynomial

functions they are called finite element (approximation) spaces.
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(8.11) is referred to as the discrete inf-sup condition.
We then consider eigenpairs of the form a relative to the

form b, but now restricted to S1 h*S i.e., pairs ),

2,h’
where lh is a number and 0 = u, = Sl,h’ satisfying

“h’uh
(8.14) a(uh,v) = Ahb(uh,v), VYV v € Sz,h’

and use lh and u, as approximations to X and u, respec-

tively. (8.14) is called a variational approximation method or

Galerkin method for (8.10) in general and, if and S

Si,n 2.h

consist of piecewise polynomial functions; it is called a finite

element method. Since N = dim S1 h = dim 82 h < ®, (8.14) is
equivalent to a matrix eigenvalue problem. In fact, if ol,...,mN
and Yqeeee ¥y are bases for Sl,h and Sz,h’ respectively, then
N
(\h,uh = :E:zj¢j) is an eigenpair of (8.14) if and only if
j=1

- -
(8.15) Az = lth,
where 2z = (z z )T

1! ’ N ?
A = (AiJ), Aij = a(mj,wi)
and
. . - . : ~1
(lh,uh) is an eigenpair of (8.14) if and only if (\h ,uh)
is an eigenpair of the compact operator Th : Hl — S1 h defined
by
= A [ < .
(8.16) a(Thu,v) b(u,v), u Hl, v 82,h
The operator Th can be written as PhT, where Ph is the pro-
jection of H1 onto S1 h defined by
78
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(8.17) a(Phu,v) = a{u,v), Y u

Hl’ v € Sz,h'

Using the central result in Babuska [{1971] and Babuska and Aziz

{1973, Chapter 6], it follows from (8.1) - (8.3}, (8.11), and (8.17)

that
Cy
1y — i < ———— i l\y—7v
'a Phu!1 < (1 + B(h)) rjgf u t,l.
“T1,h
Thus from (8.13) we see that Ph — I pointwise. Since T 1is
compact, Th = PhT —T in norm on Hl‘

Let A Dbe an eigenvalue of (8.10) with algebraic multipli-

city m, by which we mean that 1—1 is an eigenvalue of T with

algebraic multiplicity m. Let a = ascent of 1_1—T. Since Th

— T in norm, m eigenvalues ll(h),...,lm(h) of (8.14) will

converge to 1. The lj(h) are counted according to the alge-
braic multiplicities of the uj(h) = J\j(h)_1 as eigenvalues of
Th' Let
(8.18) M = M(?) = {(u : u a generalized eigenvector of (8.10)
corresponding to 1\, %uﬂl =1},
(8.19) M* = M*(k) = (v : v a generalized adjoint eigenvector of
(8.10) corresponding to 1\, ‘V‘2 = 1},

and

(8.20) Mh Mh(\} {u : u in the direct sum of the generalized
eigenspace of (8.14) corresponding to the

eigenvalues \j(h) that converge to

\,iu‘l =1},
and define
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(8.21) £ = F () = sup inf “u-7
' h h ueM(r) y=sS 1
1,h
and
* *
(8.22) &h = ah(\) = sue inf v-n12.

Let M(A) = R(E) and ﬁh(\) = R(E,) .
We now state and prove four results which correspond to

Theorems 7.1 - 7.4. Let o denote the ascent of 1 *-T.

Theorem 8.1. There is a constant € such that

(8.23) 6(&(1),ﬁh(k)) < CR(h) "¢

Theorem 8.2. There is a constant C such that

m
(8.24) 1x—(% :E:kj(h)_l)_ll < ce(h)'lghe;.

j=1

Theorem 8.3. There is a constant C such that

_1 * 1//(1
- < ' . ]
(8.25) I Vi(h) e Cr3(h) e e :

Theorem 8.4. Let 1) (h) be an eigenvalue of (8.14) such that

lim Y (h) = L. Suppose for each h that Wy is a unit vector
h-0

satisfying (\(h)_l—T)kwh = 0 for some positive integer k :« «.

Then, for any integer ¢ with k ¢ ¢ < a, there is a vector Uy
such that (\_I—T)iuh = 0 and
, -1 (£-k+1)/a
8. a, -w, b 3 : .
(8.26) Wt C(3(h) fh)
Proofs. The eigenvalues and generalized eigenvectors of (8.10)

and (8.:14) have been characterized in terms of the compact opera-
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tors T and Th and we know that Th — T in norm. Thus we can

apply the results in Section 7, with X = H1 and T and Th as

v
A,
defined in (8.8) and (8.16), to estimate the eigenvalue and eigen- ol
“tﬂ
>
vector errors. Note that M = R(E) - (unit sphere in Hl)' where E:g
"N
-1 o
E 1is the spectral projection associated wiht T and | l, and
r:".'
M (2) = R(E_) - (unit sphere in H,) where E is the spectral T
h h 1 h '-\,'.
- T
projection associated with Th and \jl(h), j=1,...,m. Consi- Q?
der first the proofs of Theorems 7.1 and 7.4. These results will :
.'_:.(‘
follow immediately from Theorems 7.1 and 7.4, respectively, if we Eﬂ
o
:“f
show that i?
o~
T - n -1, v
(8.27) (T Th)lR(E)L <. C3(h) £ {59
.‘_: A
. . K%
From Babuska [1971] and Babuska and Aziz [1973, Chapter 6] and \::
s
(8.1) - (8.3), (8.6), (8.8), (8.11), and (8.16) we have ~
c, AN
"(T—Th)uwl < (1 + W) :rsxf ‘!Tu-t'-l. _'::
t=>3.h ‘-::*-
Since M = R(E) is invariant for T, for u = R(E) we obtain e
N
inf Tu-r!, < ¢, T -u ,. ?t
] 1 h 1 S
231 n NOR
N
]
(8.27) follows from these two estimates. -
VA
Now consider the proofs of Theorems 8.2 and 8.3. The right }ﬁl
hand side of (8.4) is bounded by Qﬁ
>
m "
- }E * * % ;f
2o l((T—Th)®j®j)1| + (T_Th)IR(E) (T —Th)IR(E‘) ;i:
i ' j= 1 :.-.‘::
-1 « 9
We now show that this guantity can be bounded by Ci(h) ‘:h'h
3 * * * :‘:
= i1 H1 with u 1 = 1 and for v < R{(E ) with v 1 1 o
o
we have e
81 -
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t: * ’...1 *
. ((T-Th)u,v )1 = a((T—Th)u,A v o)
- x*
! = a((T—Th)u,A’ v ~n)
ﬁ s Cl;(’l‘-Th)u,1 A v —n-2, no= S2,h'
We have here used the definition of the operator A, (8.8), and
— * - *
(8.16). Recalling the A’ maps R(E ) = N(» -1 )"y onto
— . *
NO It %) = M (0), we get
T-T ' T ATl
- < fi - b S
(( h)ulv )1 = Cl‘( Th)ull\A )«h
From this it is immediate that
* * x* x x
AT =Ty)v 1y = Sup Fa, (T =Ty v ),
u:Hl
£ (8.28) u L =1
h 1
‘ =1 v * * .
h < CHT-T,: /A Ey v =R(E ) with v | =1,
and
p * *
¢ ((T—Th)m.,mj)1 ((T—Th)o.,E oj)1
8.29 C i .
: (8.29) B (T-T [ggy A g
. Cs(h)—lzh);
- Now, using (8.27) - (8.29) we get
i m
. x . . »® « ~ ‘ .._1 «
: l((T—Th)oj,ojlll + (’_Th”R(E) (T 'Th)lR(E , >t h noh
i,j=1
. Thus Theorem 8.2 follows from Theorem 7.2 and Thenrem R.3 from
, Theorem 7.73.
Remark 8.1. The prnof we have given for (R.24', together wi'l,
(8.12), shows thar
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(8.30) fx-a(h)| < c3(h)e, e, Ly
h™h ‘::_{R;
gy
where '
e
m ::f{

- SN
(8.31) A(h) = & Zl (h). A0
m J .'-.‘.\

. LA
Jj=1 ety

p 3
We end this section by specializing the results to the Ritz Aﬁ:i
method for selfadjoint, positive definite problems and then pre- i?:
ety
(~.(1.

senting a lower bound for the eigenvalue error. Suppose H1 = H2 Lol
= H, H'HH = ll«l  is a real Hilbert space. Let a(*,*) be a Ifﬁt
symmetric bilinear form on H satisfying (8.1) and ﬁﬁﬁ
BN
2 NN

(8.32) a(u,u) 2 allul®™, Yu € H, -
2

with @ a positive constant. Note that (8.1) and (8.32) imply Eﬁ}
o~
that a(u,u)!’? and (ul are equivalent norms; a(u,u)t’? s Ry
-
x
often called the energy norm of u. Let b be a symmetric bilin- .
ear form on W satisfying (8.7), with W, =W, =W>H compactly, {ff
and satisfying éﬁ:
‘.'\-‘..\.
(8.33) b(u,u) > 0, V nonzero u € H. oy
-,,. %
A

YRS
(8.32) implies (8.2) and (8.3) are satisfied. We note that (8.1) -:::f.-_:
o
and (8.32) show that a(*.,*) 1is equivalent to the given inner B
product (+,*) = (*,*)y on H. We will now take a(:,:) to be ;ri
the inner product on H and take H-Ua = ya(+,*) to be the norm. fff
We see that T* = Ty = T. Thus T 1is selfadjoint; it is also pos- ﬁnf
itive definite. It is, of course, mpact. t s =S = S X
compa Le 1.h 2,h h S

“~ H be a family of finite dimensional spaces satisfying (8.13). Eﬁi
i

In this case the variational approximation method (8.14) is called W
the Ritz method. (8.11), with t(h) = o, and (8.12) follow trom N
(8.32) e
: : NN
':\.':-.
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37

Under these hypotheses, the problem (8.10) has a countable

sequence of eigenvalues

0 < A s A = A s .. 7

1 2 3
and corresponding eigenvectors
u,, U,, U, ,
which can be assumed to satisfy
8.34 a(u,,u.) = A.b(u,.,u = A.0. .
( ) ( i J) j ( i j) %13

(cf. Section 4).In the sequence (Xj}, the \j

according to geometric multiplicity. Furthermo

are repeated

re,

A
J

characterized as various extrema of the Rayleigh quotient

a{u,u)

R(u) = e )

We state these characterizations now.

Minimum Principle

\1 = min R(u) = R(ul)’
(8.35) u< H
‘k = m%n R{u) = R(uk), k =
u= H

a(u,ui)=0,i=1,...,k—1

Minimum-Maximum Principle

(8.36) Xk = min max R(u) = max R(u), k
Vk:H u:.Vk uaUk:sp(ul,...,uk)
dim Vk=k
Maximum-Minimum Principle
(8.37) A = max min R(u)
k
21' "zk—l'H u-H
a(u,zi)=0,i=1,...,k—1
84
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= min R(u), k=1,2,...
us H
a(u,ui)=0,i=1,...,k-1

<,
LY

Y
4
5

<

N

2 o

PO
U

. . . _ - < A

Likewise (8.14) (with Sl,h = 52,h Sh) has a finite Jpr

0

sequence of eigenvalues

. < A O | o e S A ’ = i ’ »

» 0 1,h '2,h N,h N dim Sh :y.
o
el

and corresponding eigenvectors &;w

; N

“1,n YN, B’ 49

, RN

g Al

which can be taken to satisfy DA

.

(8.38) a(ui,h'uj,h) = \j,hb(ui,h'uj,h) = lj,héi,j' :?f?
:\::-.:x

- For the 1, , we also have extremal characterizations. v

- Minimum Principle t

> FR

A = min R(u) = R(u ), e
¥ (8.39) 1.h uss 1.,h )

4 el
s "

A = i = = 2,...,N. N
k. h m}n R{u) R(uk,h)’ k 2, . N
usSs e
. h -
s = 1= - N
a(u,ui,h) 0,i=1,...,k-1 "
O

[« :J:.‘-, ‘\

£ Minimum-Maximum Principle o

ff (8.40) ‘e n = min max R(u) = max R(u), 2f?

v Vk'h».sh uﬁvk,h uuUklhasp(ul'h,...,uk'h) :

; dim Vk,h=k

Y k = 1,2, N .
NR

. RAAS:

y Maximum-Minimum Principle ey
P

7 i

(8.41) ‘k h = max min R(u) ;_:_’:_\
’ ' ’-
Zy,ht Prey,n " Sy
alu,z, =0,i=1, Jk-1 s
h N

. :.-.:_\

' "1._'\
N
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5 = min R(u), k=1,...,N.
uesh
a(u,ui’h)=0,1=1,...,k-1
It follows directly from the minimum and the minimum-maximum
principles that
(8.42) lk < lk,h' k=1,2,...,N =dim Sh.
For a comprehensive treatment of such extremal characterizations
of eigenvalues and their applications we refer to Courant-Hilbert
({1953], Weinstein and Stenger [1972], and Weinberger ([1974].
If lk has geometric multiplicity g, i.e., if lk = 1k+1 =
= N .
) oo lk+q-1’ then lk,h""'xk+q—1,h A and combining (8.40)
Q with Theorems 8.2 and 8.3 we see that
(8.43) Ao AL, <A, +£300), 3=k, ... keq-1.
. : k j.h " Tk “h' k"’ ' !
. {Recall that the ascent a of A—l - T 1is one.) Regarding the

k

approximation of eigenvectors, from Theorems 8.1 and 8.4 we see

a2 » 1

that if w j = k,...,k+g-1, then there is a unit eigen-

s |

h- %j,n’

. vector u = uy, of (8.10) corresponding to Xk such that

iy - I <

(8.44) fu-w < ey,
9
o and if u 1is a unit eigenvector of (8.10) corresponding to lk’
b then there is a unit vector wh in sp(uk'h, uk+q—1,h) such
how

that
F: (8.45) du-whwl < th.

\ If lk is simple, i.e., its geometric multiplicity is one, we

F have
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(8.46) ‘:uk-uk’hql < «Sh.
To be more precise, if LPRA PR satisfy (8.34), then
ul,h'uz,h""’uN,h can be chosen so that (8.38) and (8.46) hold.
Regarding these applications of Theorems 8.1 - 8.4, see the dis-

cussion of the selfadjoint case at the end of Section 7.
We have shown that |i-A{h)}| = Cci, where 1 (h) is any
eigenvalue that converges to 1. We now show that if 1 is

simple, then the error has the lower bound
[A=x (h)]| = Cai, C a positive constant.

These results, together, imply that the eigenvalue error is of the

same order as 5h'

Theorem 8.5. (Kolata [1978]). Suppose we are in the selfadjoint,

positive definite case discussed above and suppose 1 is a simple
eigenvalue of (8.10), i.e., it has (geometric) multiplicity one,
A (h) is defined by the Ritz method, and 1 (h) N \', Then there

is a positive constant C such that

(8.47) I (h)-A| 2

[

for small h.

Proof. Let ©» be a unit eigenvector of (8.10). Combining (7.4%)

and (7.7) yields

\’1 - x(h)«»l = a((T—’I‘h)(,'a,q)) + a((T‘Th)ﬂ,L}:Oﬂb)
(8.48) .
a( (T‘Th)‘:’ A ) - Ia( (T'Trl)('r , Lh(,') -y
where Lh is ~he projection introduced following (7.7). Now
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! using (8.8), (8.16), and the definition of (h' we have

a

5% %450

o
z
e

5
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5

o)

la((T-Th)®,Tm—T

7
5

h

[ 4

AL (T-T

-

.2
Yol o

h

=

-1 .2
1 o) \Tho:a

> PSP
ASSHAD

-1 . 2
Y inf e 1..a

zésh

%
o
.
.
. [
»
-

NN

. o ]
and, using (8.27) and (8.28), we have . T

'-".i :

* * .
la((T—Th)w.Lhana)l s n(T-Th)owanLho—o a )

)

s

*

Ch(T—Th)wﬁa,(T—Th)Oﬂ

b g o 4
~

(8.50)

A

A
&
4 3y A 4

a

[ R g
o'
~e

2
h:‘ h.

A

c'T-T

‘¥ e pla ek
N

)
‘-:.f'.r' ‘:‘
VRN

. .
e

£

]
«

L]

Vs

Combining (8.48) - (8.50) we obtain
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From this we obtain ?:
2 ~ ".;.".
V(h)=t v (h)r 2 N

(\«2)’§' for h small.

Remark 8.2. If 1 is a multiple eigenvalue, one can prove .

[v-y(h)! - C inf  inf o -2
ao MV Sh

. 'l\l'l
£R

'v\" j'.'-‘ LYS!
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Cf. Theorem 9.
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Section 9. Refined Estimates for Selfadjoint Problems Tigz_
In the previous section we presented error estimates for Cjtj
variationally formulated problems and at the end of the section we EE;f
specialized these results to the Ritz method for selfadjoint, posi- ééif
tive definite problems. Because of the importance of this case in r@ﬁ
applications we now present an alternative analysis due to Babuska Efﬁ’
LS

and Osborn [1987]. This analysis, which is somewhat more direct C;QL
RN

and self-contained than that in Section 8, yields stronger results i%;?
than those in Section 8 in the case of multiple eigeneigenvalues. s&zw
As at the end of Section 8, we assume that a(-,:) is a sym- ;gE'
metric bilinear form on H satisfying (8.1) and (8.32), that . ﬂx;
b(:-,*) 1is a symmetric bilinear form on W satisfying (8.7), fiif
with W, =W, = W> H compactly, and (8.33). We take a(-,:) ,
and H'Ha = ya(*,*) to be the inner product and norm on H and iiﬁ,
set fi-l, = Yb(*,*). Then, as stated in Section 8, the eigenvalue g?if
problem (8.10), i.e., the problem ﬁEET
e

fa = H, u= 0 £

(9.1) i R
a{u,v) = b{(u,v), VveH R

has a countable sequence of eigenvalues :g%i

0 <Ay < Ay n ... 74

which can be chosen to satisfy

(9.2) a(ui,u ) = kjb(ui,uj) = 1 .h

joijye
Furthermore, any 41 H can be written as

89
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L V)
(9.3) u = :E:ajuj, with a, = a(u,u,),
j=1

with convergence in H-ha (cf. (4.10) and (4.11)). We assume Sh

¢

-~ H 1is a family of finite dimensional spaces satisfying (8.13)

with #3(h) = a. The eigenvalue problem (8.14) with S, n - S =

Sh’ i.e., the problem

u, < = 0

h € Shr Yp
a(uh,v) = khb(uh,v), Vves

(9.4)
h

has a finite sequence of eigenvalues

A < £ ... 2
0 < 1.h ‘2,h A

and corresponding eigenvectors

which can be chosen to satisfy

= A

(9.5) a(uilh,u.

j,n 5,0°0% hY%5,m) % Vi

The \k and ‘k h satisfy the extremal principles stated in
Section 8.

Our analysis makes use of the following lemma that expresses

a fundamental property of eigenvalue and eigenvector approximation.

Lemma 9.1. Suppose (v ,u) is an eigenpair of (9.1) with oy
= 1, suppose w is any vector in H with W, =1 and let
= a(w,w). Then
: 2 2
. V- A = - -\ - .
‘ (9.6) w-uo w-u

| (Note that we have assumed u and w are normalized with respect
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U'Nb here, whereas in (9.2) and (9.5) we assumed u, and

are normalized with respect to H’ﬁa-)

ane
4

By an easy calculation,

PELSSAM
“w 8%
SRR

pw-ud 2 - anw-wi? = pwe? - 2a(w,w) + pui?

» 2 con 2
Il - B i
XLw”b + 2Ab(w,u) l.u.b.

4 &

'I,I.i'
Lt

since

LSS NS Ny
s
N YA

i
»

a(w,u)
we get the desired result.

For i = 1,2,... suppose lk is an eigenvalue of (9.1)
i
with multiplicity qi, i.e., suppose

e = <\
ki+1 ki+qi—1 ki+q

-4

5t
A A

i

'l..
s
.

by

Here is the lowest index of the 2nd distinct eigen-

o
L
LY

)
¢
At

value, k3 is the lowest index of the 3rd distinct eigenvalue,

etc. Let

{9.7) £o(1,3)
h u:M(\

1 F
3

¥ 3
'

N

a(u,uki'h) = ... = a(u’uki+j-2,h

e
I S
(24

M(Ak is defined in (8.18). The restrictions a(u,uk h
i i’

[/

)

I's
N
v

= a(u,u = 0 are considered vacuou i
‘ ki+j—2.h) s if
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: = s (A © (Y,) is defined i )
Note that ah(h,l) ah( i), where ah( i) is defined in (8.21}).
We now estimate the eigenvalue and eigenvector errors for the
Galerkin {(Ritz) method (9.4) in terms of the approximability

gquantities £h(i,j).

Theorem 9.1. There are constants C and ho such that

2., . ) A
(9.8) Aki+j-1,h—\ki+j—1 < CCh(l,J), ¥V 0 < h = ho, j=1,....,9.,

i

i
—
N

and such that the eigenvectors u,,u of (9.1) can be chosen

1/ 72" "°

so that

| (9.9) ?uk.+j—1 h Yk +j—1;a < Ceh(i,j), v O<hsho, j = 1,...,qi,'
i ! i
i=1,2,...,

and so that (9.2) holds.

Remark 9.1. (9.8) should be compared with {(8.43), (8.47), and

(8.51).

Proof. Overview of the Proof. The complete details of the pronf?,
P which proceeds by induction, are given below. Here we provide an

overview. In Step A we give the proof for i = 1. The procf Iis
J very simple in this case and rests entirely on the minimum prin-

ciple (8.39) and Lemma 9.1.

The central part of the proof is given in Step B. There we
prove the theorem for 1 = 2, proving first the eigenvalue esti-
mate (9.8) and then the eigenvector estimate (9.9). In particular,
in Steps B.1 and B.2, estimates (9.8) and (9.9), respectively, are
proved for j = 1. We further note that the argument used in <tep
B proves the main inductive step in our proof, yielding the result

for 1 =1 + 1 on the assumption that it is true for | i, T

'n...f.;f e .-'.;f.;fg.’-.{u
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. be somewhat more specific, the argument in Step B.1 proves (9.8)

directly for any i =2 2 (and Jj = 1) and that in B.2 proves (9.9)

for i =1+1 (and j = 1) under the assumption that -y n o~
ufua——eo as h—0 for < < ki+1—1 {(cf. (9.30).

Details of the Proof. Throughout the proof we use the fact that

fh(i,j) can also be expressed as

Ch(i,j) = inf inf Ju-v!
uEM(lki) (€Sh
(9.77) a(x,uki’h)=...=a(x,uk{+j_2’h)=o
a(u,uk"h)=...=a(u,uk'+j_2'h)=0
i i
Step A. Here we prove the theorem for i = 1.
Step A.1. Suppose \k (k1 = 1) is an eigenvalue of (9.1) with
1

X s . : _ - - .
multiplicity q9,, 1i.e., suppose \1 \2 C a, < ql+:
In this step we estimate Al n - Xl, the error between and
the approximate eigenvalue among } P that is «icueat

1,h ql,h
to ‘1' i.e., we prove (9.8) for i = 3j = 1. Note that
;3(1,1) = inf inf u-to
5
u M(ll) I‘Sh

is the error in the approximation by elements of S, o thee 1
easily approximated eigenvector associated with

From the definitions of eh(l,l) we see that there 1. 4 .

A ,

M{ 1) and an sh Sh such that

) a - =
{9.10) u Sy a h(1,1).
Let
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By the minimum principle (8.39) we have

(9.11)

(9.12)

Step A
1,5,
L <

-
Heer e

LR

vield the desired result.

this step we prcove [(9.3) for

e.genvectors of 13.1) satisfying
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211/2 \'.‘P\
Jul,h E aj ujJa = E [aj ] asal

j=1 j=q1+1
(9.14)

-1/2 0N,

< C(1 - ll/l ) £h(1,1). "

q1+1
9

5 a;1)uj o

Redefining u, to be qJ=1

1 .

(1) N

Tz oalta,l

j=1 J J a

1, so that (9.2) still holds, and from (9.14) we obtain

5
, we easily see that ‘u_ i_ = NN
--)\

£

r‘-r ..v'%. :i;,
"s,»' I 5 1‘ )

’
A

(9.15) Ta e U - Cch(l,l).

1,h 1"a

-«
o]

'e

W
'.

as desired. Note that u, may depend on h,

Step A.3. Suppose q, 2 2. From (9.7') we see that

T
:l .-‘.
RN

PN %y e T
. L a

(9.16) sh(1,2) = inf inf Wu—{ﬂa
ueM(ll) YeS

a(u,u

L] 'l'
N

€
»

1,h) =0

YRty Ay
AN
AR

N5 “:“l

4
»
1

Choose u, = M(\l) with a(ﬁ

h =0 and s, < S with

h'%1,n’

\

'
il
N

0 ‘vy
a L]
oy

a(s, ,u = 0 so that

h'%1,n

’
.
VoA,
DA
.

‘y *u

oA
W

and let NN
= ALY
u, Sy ey

u S — ; T — :" -
h ' Sh 57 .&E
AN b(s,.,s,) o

Since a(sh,u1 h) = 0, from the minimum principle (8.39), Lemma B

9.1, and (9.17), we have

(9.18) A A < g - u b

A

2
th(1,2).

This is (9.8) for i =1 and j = 2.
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Step A.4. In Step A.2 we redefined ul. Now redefine u2,...

so that u ce e are a-orthogonal. Write

1" q,
X
NI SRR
h,2 J i’
j=1

Now, proceeding as in Step A.2 and using (9.18), we have

L Y]

O
2 2
) S (42 <13 [al® _
(1 12/1q1+1) [aj jl s | [aj J (1 12/lj)l

j=q1+1 j=1

|
v
e

2,h' %2, n) T P(H
-1

= (A p ~ A0y

1A

Cci(1,2).

Thus

(9.19) fa - a

But by (9.15),

a, = aluy yeay)

= a( -u

Y ohU1 ™Yy !

(9.20) < u, -u "

Y h'a %171 ,na
< Cch(l,l)
< Cepl(1,2).

Combining (9.19) and (9.20) we get

9, 9,

. _ (2), . ., 3 :E: (2) (2).
,;uz’h ZaJ ujga < ‘uzlh aj uj‘a + al Ul a

j-_' j=1

e A
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Redefining u, , we see that

a(ul.uz) = 0, so that (9.2) holds and

(9.21) i -u s Ce,(1,2),

1y
2'a
which is (9.9) for

Step A.5. Continuing in the above manner we obtain the proof of

(9.8) and (9.9) for i =1 and j = 11,0009

Step B. Here we prove Theorem 9.1. for i = 2.

Step B.1. Suppose lk 5 = q1+1) is an eigenvalue of (9.1) of
2

multiplicity q,- In this step we estimate - A, the

\ _
k2,h k2

error between kk and the approximate eigenvalue among
2

\kz'h,..., lk2+q2—1,h that is closest to \kz. Note that

(9.22) sh(2,1) = inf inf hu-z?a.
ueM(1 }) xS
k2 h

Introduce next the operators T,Th : HH defined in (8.8)

and (8.16), respectively, i.e., the operators defined by

Tf < H
a(Tf,v)

Thf = Sh
a(Thf,v) b(f,v), V v S

h

It follows from (8.1), (8.7), (8.32), and (8.33) that T and

are defined and compact on H. Furthermore
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(9.23) H(T-Th)fna < C inf ITE - Iﬂa.
xe Sh

We now suppose the space H and the bilinear forms a and
b have been complexified in the usual manner. Let [ be a
circle in the complex plane centered at B = 1;1, enclosing no
2

2
other eigenvalues of T. Then for h sufficiently small, T

I < p(Th) and Int () n a(Th) = {u }, where

reeoa
kz,h k2+q2 1,h

_ . -1 .
1k2+i = lk2+i' Also, as we have seen in Section 6, E(ukz), the

spectral projections associated with T and My and Eh(uk )
2 2

the spectral projection associated with Th and “k2+i,h’ i-=
0,...,q2—1, respectively, can be written as
(9.24) E(g, ) = = (z-T) laz
k2 2n i

r
and
(9.25) E (4, ) = 527 | (2-T_) 'd

: htfk,) T 2wd 2" h z
r

Let u = R(E(ukz)). Then vh = Eh(“kz) u € R(E(“kz))' and

from the formulas (9.24) and (9.25) we obtain

ha - v i = H(E(#kz) = Ep(uy )ulg
2
1 | -1 -1

= HE;T J (Z'Th) (T'Th)(Z‘T) u dzj

r
= 1 - 1 p —u__ i

(9.26) = gy | (z-T Th(T Tp)gmp— 92

Ir 2
<« X (2n rada(r)) sup 1(z-T, )y ——— i (T-T, )u.
T o2n " h rad(lrj h' "ra
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e +rad(r))'1w(r-rh)ura

2

(”k2+q2-1,h

N

CH(T—Th)uHa.
(9.23) and (9.26) vyield

4 - ii T -
ta Vh'a < C inf iTu-t¥

(esh
(9.27) = C 12§ nykzu-twa
& Sh
< C inf 'u-x!
x€Sh

This is an eigenvector estimate; it shows that starting from any

u <€ R(E(ukz)) we can construct a vh = vh(u) € R(Eh(ukz)) that

is close to u. We now use (9.27) to prove the desired eigenvalue

estimate.

By the minimum principle (8.39) we have

(9.28) A - A = inft a(v,v) - 1 .
k2,h k2 s k2
h
ORYAY b=1
a(v,uilh)=0,
i=1,...,k2-1
Since vy = R(Eh(pkz)), we know that a(vh,ui'h) =0, i =
1,...,k2—1. Thus, from (9.28) we find
v v
v b T M @ (“Vh” , ”vh”b] IR
2' 2 “"h'b "~ "h 2

Combining this with Lemma 9.1 and (9.27) we obtain

e

& PR Y

AN

[T
-

A
e 5
s
l'*.

t

e
)

4"‘.. Ty
~ L

I AENTS

Ll sy

Ca
'l ‘l

P A

PP
. .
r &

?

PR
«
PN
N

P

I.
a
7

.
b

£e,
£



N I A A A N AR AR S AR SRR RENT (GANE ) A A
A K Rl - N B . » 0, ) X 2

< C inf 'u—zla
=S

h

for u = R(E(yk )} with iufa = 1. Hence, using (9.22),
2

(9.29) A - A < C inf lnf TR Sl g

2 ueM(lkz) xish

2
a

= C(ﬁ(Z,l),

which is (9.8) for i 2, j = 1.

Comment on Inequality (9.29). A careful examination of the proof

of (9.29) shows that ¢ depends only on Hy and 1y

1 2 2

Hi but is independent of h, and that (9.29) is wvalid for> h
3

< h

Hie

0’ where ho is such that h = ho implies T = p(Th),

Int (') » o(Th) = (ukz,h""'uk2+q2-1,h)’ and u is

rad (I')/2. Note that if we were con-

-u
k2 k2+q2-1

small, say u,, -u _ <
k2 k2+q2 1.h

sidering a family of problems depending on a parameter 1, we

could bound C = C(r) above, independent of r, provided My ()

- ﬂkz(r) and ukz(r)-yka(r) were bounded away from 0, and we

could bound ho(r) away from O if [ {t) = w(Th(l)). Int (I'(t))

‘ a(Th(t)) = {ukz,h""’uk2+q2—l,h}' and ukz(r)—lk2+q2_llh(r)

rad (F(r))/2, uniformly in r.

Step B.2. Suppose, as in Step B.1, that 1, has multiplicity

2
q2. We have shown in Step A.5 that we can choose the eigenvectors
ul,uz, of (9.1) so that (9.2) holds and so that
(9.30) uh,j - uj a C?h(l,J), j = 1,....q1 = k2~1.
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[ - a " "'7"':?{"3
A%
y ','-_..i
4 Write
s o
(k,)
] (9.31) ukz,h = aj uj
j=1
v, From (9.31) we have
> (ky)q2
h ;Z[a ](1-7( /A1l = fa(u ,u } - 1. b(u s u )i N
. k2 h) k2,h k2,h k2 k2.h k2,h t'::
j=1 DAY
| -1 \4’:_\'
. (A - A A , o
¢ kyoh ky" ky.h e
ol
4 which, together with (9.29), yields A
o -'\i‘
~
kz— ® .‘:::'
: (ky)q2 (ky)q2 | s
(9.32)|z [a ](1-.\k/x.)+ z [a ](1-\k/\.)| 4
2 J ) 3 s
j=1 j:k +q .-.‘_‘-
- 2 2 N
- ) N
< Cr.h(2,1). <.
ol
. Note that the first term inside the absolute value is negative and
e, the second is positive. 1In addition
A
< - l < . = LIS - ’
C1 |1 kz/le Cz’ VJ k2, k2+1, k2+q2 1
.
.
with Cl,Cz positive numbers. Hence from (9.32) we obtain
)
N k-1 .
(k2) 2 2 (kz) 2
:: (9.33) [a ] < Dlzh(2,1) + D2 Z [a :)
' j=1 i=k,+q,
’ and
k-1
3 X (k)2 ) 2 (ky)q2
“ (9.34) Z [a ] - Daah(z,l) + D4 {a ] .
j=k,+q, j=1
Write
"

101

- e e L - . T T Mt T A" AT af T e T Y AT ™M
RN P S Sy SRS
< L

A AL AN PSRN AN

S R O Ay ‘_ " :-. e A AT Y . et e NP IS W “




[ u ‘ ?n': _ "'.'- w’

.

~

[o 3
(9.35) u, - u, = ‘;ﬂb. u,, i=1,...,k -1 =
L d

Then, by (9.30),

2 . 2 2 . . _
(9.36) j{:bi,j = ”ui,h uida < Cch(l,l), i 1,...,k2 1.
Next we wish to find constants 01,...,“k -1

-1

2 (k)
(9.37) X '3 Jh = ay p 1—1,...,1(2—1.

Using (9.35), these equations can be written as

-1 ® k2-1

kz
a[ui,jz (ajuj + aj bj,f'ut’)} = Q
=]

£=1 j:

[

(9.38)

Since (8.13) implies 5§(2,1)——e0 as h——0, from (9.36) we see

that the b, ., are small for h < h

j.4 0’ with h0 sufficiently

small, and hence the system (9.38) is uniquely solvable, and,

moreover, there is a constant L, depending only on k2, such
that
ky-1 1/2 ky-1 (ey), 2712
(9.39) [Z a.z] [ [ ] ]
i
J=1 j=1
Now, from (9.30) we obtain
(k,)
la, 2| = la(u Ju )|
] ' k,.h' ]
2
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= |
12 n5 T Yyn)
< lla o a, u, ¢
kz,h Bo J j,h"a
= 1 i
.uj uj,hJa
< Cfl'j(h), j=1, ,k2—1
Letting
k2—1
(9.40) p2 (n) = Z e2(1.9),
k h
2 o
j=1
we see that
k, -1
[ 2 (k2) 2 1/2
(9.41) z [a. ] < Cp,. (h),
E= k
: 2
j=1
and thus, from (9.39)
k,~1 1/2
(9.42) a.? < LCo, (h)
i k
. 2
j=1
< Cp,. {(h).
k2
Now let
k2-1
(9.43) o= uk2,h - Z a’juj,h'
j=1
Then » = Sh' Furthermore, from (9.35) and (9.37) we get
0, 1 - k2 - .
_ k-1
(9.44) a(ui,w) = (kz) 2
ai - Z ajbj,i' i - k2.
j=1

From (9.42) and (9.43),
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(9.45)

Using (9

as h——0, we get

(9.46)

where C’

(9.40),

RS T :.q - T'-. TS - s :... ):J‘
- ' ~ "y,

LG mARTANA a¥AoiS ata' JAsake aRA" 1. vy S ot IO F AN ATREARNRE Ry T gy yegrpey

SRR

3

Plwli - 11 Pl ~ Iy I
YT a ) T 'a k_.,h a’

')
3?%
4;5

A
'-I
/’
s‘
2

lp = w,

Ay

r:"."
o

¥

T E R Y,
Py '
”

1A
Q

e N

2

=

j=1

IA

Cpk (h).
2

.29), (9.44), and (9.45), and the fact that pk (h)y—>0
2

) - A
2 kz,h k2
Ceh(2,1) > Y
k2,h
14 w
2 a(u ’ #) - A b(u ' —_')
k2,h Lwha k2 k2,h lea
k.-1
S (ky) e (ky) 2 ‘k,
= C Z a, [ae —Z aibi,f?](l - T——) .
4 ’
i=1

=k,*4,

> 0 and is independent of h. Combining (9.36), (9.39),

and (9.46) we obtain

(k,.)~2
2 2
[af J < C[&h(z,l)

k-1
N
+ }E la, I}Elaillbi’ﬂ]
£=k2+q2 i=1
k-1 o
2 (kz)
+ C [fh(Z,l) + EE |ai| }E la, !'bi,ﬂ]
i=1 F=k2+q2
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2 ® 1/2
2 (ky) /
< C[Eh(Z,l) + laiI Z Iae | .
i=1 =k +q,
(s ]
(9.47) - o2 1/2
| i,fl
=ky*a,
k,-1 © 1/2

g e | L o go = T

(k)
c c[e§(2,1) + il > e, 22

[
1
[
([}
~
N
+
Ko
[\

ko~ 1/2 .
. 2 _ — 2
< C[eh(Z,l) + e:h(l,k2 1) /kz I[Z |ai| } .
i=1

® 1/2
> a2 } ]
Ia,: [

=ky*d,
- k,=1 C1/2
2 (kz) 2
< C[fh(Z,l) + sh(l,kz—l) ,/kz-l L Z [ai } :
i=1

P X ~ l / 2
k
Ia( 2) [ 2
£
=Kytq,
k,-1 1/2
2 (ky)q2
< C[ch(Z,l) +ah(1,k2—1) Z [ai }
i=1
Ay 1 / 2
(k,) 2] 1
la, ! }
=k,*q,
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«
.
o
g
3
-
>
-
-
-
-
'}
(2
g

Y

5 , =
o & (ky)q2) 172 5
(9.47) is a quadratic inequality in Z [a(, ] } . wWhose O
! =kytd,
solution yields :":
o k,-1 NS
15 , - e
oo X (k2) 0 2 (k2) 2 > :‘:
. . - =

(9.48) Z [a(j J - Cah(l,k2 l)z [ai ] +Ch(2,1).

’ f: i = .“P

E‘ k2+q2 i=1 R
’
o
:ﬁ Combining (9.33) and (9.48) we get R
L3 s
k,-1 k-1
2 (k)2 , 2 (k)2 , o
’o < . - 5 \ .:-_.
. Z [ai J < leh(2.1) + D2C).h(1,k2 l)z {ai ] + D2C‘ah(2.l,, o
i=1 i=1 A
) "
E‘ and thus, since ).‘h(l,k2—1) is small for h small, j_ i
!‘."-
a k-1 Y
N (ky)2 ) o~
o Y
| (9.49) [ai J s Dgrr(2,1). 3
‘ i=1 ]

: :::
- Next, combining (9.34) and (9.49), we get e
lﬂ"\ :\..
Y a .\.‘:_

(ky)y2 5 o
(9.50) Z [a{ } +D65h(2,1). " @

(. v = -
&"'. ¢ = k 2 +q 2 :‘::
_ Finally, from (9.31), (9.49), and {9.50) we have :j::.
v Ny
k. +g. -1 k. -1 o
4 < (ky) 2 (ka2 > (ky)o2]" 2 73
=, u - Z a, u. = Z a, + Z a. l .
k,.h J J a J J !

T =1 j=k,+q ’ ' e

= J 2 J 2 2 p
':‘1 - )
. Cop(2,1). 4
’ k +qg -1

N 29 (k,) o

z a u ot
Ya J=k2 J AL
L. Redefining N to be Pve—] ., we see that LIV 1. -
2 2%, (k) 2 "
- 7. a. u "
:. j=k2 J J a :-\:
"
. 106 b
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!

so that (9.2) holds, and

(9.51) ”ukz,h - Ha < Ceh(2,1)-

This is (9.9) for i =2, j = 1.

Comment on Estimate (9.51). In the proof of (9.51) we used (9.30),

which was proved in Step A. A careful examination of the proof of
{9.51) shows that we that we did not use the full strength of
(9.30), but only the weaker fact that !Iuj h—ujua——ao as h—0

for j = k2—1. (Cf. the Overview of the Proof.)

Step B.3. Suppose q, 2 2, In Step B.1 we estimated lk h -~
2 ’
A -2 .
k2+1,h k2+1
We proceed by modifying problems (9.1) and (9.4) by restrict-

lk . In this step we estimate

ing them to the spaces

kz,h
H = {ue H : a(u,u ) = 0}
k2,h

and

kz,h

Sh = {u € Sh a(u,ukz’h) = 0},

k2,h
respectively, l.e., we consider the problems (9.1 ) and
k2,h k2,h

(9.4 ) obtained by replacing H and Sh by H and
k,.,h k. ,h
Sh2 in (9.1) and (9.4), respectively. (9.4 2 ) has the same

eigenpairs (lj,h' uj,h) as does (9.4), except that the pair

2!

(A h,uk h) has been eliminated. (9.1 ) has eigenpairs

2’ 2’

.h k,.h

2 u 2
J

(2 ), which in general depend on h. Nevertheless,

r

w N K

(9.52) xk2+( = A €=0,...,9,-2,
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i.e., Ak . the eigenvalue under consideration, is an eigenvalue

2
k2,h
of multiplicity q2—1 for problem (9.1 ). 1Its eigenspace is
’kz,h .
M (1 ) = {(u € M(2 ) @ a(u,u ) = 0}.
k2 k2 h,k2
We can now apply the argument used in Step B.1 to problems
kz,h kz,h
(9.1 ) and (9.4 ) and, using (9.7'), we obtain {(cf. {9.29))
A2
(9.53) \k2+1,h - lk2+1 < Cazlz(h), for h < ho.
k2,h
Since uy h depends on h, the problems (9.1 ) and
k,.h 2 .
(9.4 ) depend on h. It follows from the Comment on Inequality

(9.29) with © = h that we can apply the argument in Step B.1 ob-
taining C and ho that are independent of h. To see this, note

that Hie {(r) = ”k , by (9.52), Hie (7)) = Hy by the minimum
2 2 3 3

principle, and Vi (T)—ayk ., since My ~Hy (v) = M —“kl.h' by

1 1 1 1 1
the minimum-maximum principle, and uk h——ﬂuk (cf. (9.51)), and
1’ 1
hence that (v) - (1) and u (v) - n (r) are bounded away
k1 k2 k2 ka

from O. Then note that [ (tv) =T = p(Th(r)) = p{T,_)-{u .

h kz,h

Int (F(r))  o(T(r)) = Int (T) ~ (a(T)={u, ,})
2'

{u p e Q _ Y}, and u,_ (1)
k2+1.h k2+q2 1,h k2

<« rad (F(r))/2 = rad (I')/2.

-u (r) =
k2+q2-1,h

u,. -u
k2 k2+q2—1,h

Step B.4. Suppose q2 = 2 as in Step B.3. Here we show that

u can be chosen so that

u - u.
k2+1 k2+1,h kK. +1 a

) © Cry(2,2). We

know that
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(Cfih(l.j). J

joh %5 ac .
ce, (2,1), 3

AT

asal s ot ot

(cf. (9.15), (9.21), and (9.51)). Assume that u

k2+1

CELE

have been redefined so that (9.2) holds. Write

> (k +1)
“k2+1,h = Z Uy

If we apply the argument used in Step B.2 to

[T Y

i.e., if

; "l{\{‘l,W < \' }'

uk2+1,h'

N %

we let k2 be replaced by k2+1 and use (9.53) instead of (9.29),

we obtain

k2+q2—1

Y ‘N‘ sy "n‘ ‘u' 'u. 'v“‘oi. P

i=k,

But, by (9.54),

and hence

N AL, LSRR S Y



() V) o - a ‘}
s
-
¥
oot
&\: ko+gy+l (k,) o
z a. u he'
j=k,+1 J J o
Redefining u to be - , We see that o
W kol “2* 97 (k) o
[ a u,ll ::
o = J J"a
ti j—k2+1 :
. ‘.l
Il | = = i = sy , .
- "uk2+1|'a i, a(uk2+1,uj) 0, Jj 1, k2 so that (9.2) '
P b
LAY Y.
- holds, and ~
N
G Tu u i s ce_ _(h), N
‘fb k,+1,h k,+1"a 2,2 .:,‘
. . . -
P which is (9.9) for {1 = j = 2. P
v'\:‘ P"
- f‘-
. Step B.5. Continuing in this manner we prove (9.8) and (9.9) o
g
E for i =2 and j=1,...,q2. o
*H-
. "N
:: Step C. Repeating the argument in B we get (9.8) and (9.9) %‘C
for i = 3,4,... . This completes the proof. e :}.
T4 Remark 9.2. Babuska and Aziz [1973], Fix [1973], and Kolata o
. .:\‘.
.i: [1978] proved the estimate N
'y ':'t
2 oy
(9.55) A _ -2 . .S CES(AL), §=1,...,4;.
E ki+j 1,h ki+3 1 h* 1 i s
(B3 -’-
o
~ where ¢,(1;) is defined in (8.21). (9.55) is weaker than (9.8). 3
l\ K
e N
~~ For j = 1,...,qi—1, (9.8) shows higher rates of convergence for '
i certain problems; see the discussion of multiple eigenvalues in ::-':
Subsection 10B. Birkhoff, De Boor, Swartz, and Wendroff [1966] e
o
l{' ..‘
NI - —- ]
- estimated lki+j—1,h Aki‘*J-l in terms of the sum of the squares J
Lo
S
Ls of the a-norm distances between Sh and the unit eigenvectors -:.:
) -
) S
associated with all the eigenvalues 1, not exceeding ‘k . e
i o
w
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CHAPTER III. APPLICATIONS

In this chapter we apply the abstract results developed in

Chapter II to several representative problems.

Section 10. The Ritz Method for Second Order Problems

A. Vibrations of a Free L-shaped Panel

We consider the problems of the plane strain vibration of an

L-shaped panel Q@ with free boundary. The specific shape of the

panel is shown in Figure 10.1.

LY
A

Agq

P

Figure 10.1 The L-Shaped Panel @

The equations governing the vibration of an elastic solid

were discussed in Section 1 (see (1.33) - (1.35)). Corresponding

to the L-shaped panel we have the eigenvalue problem

111

PP e e T .{-.._ .'/.~"..'<’“~"-"'..'.- T DI ...‘--‘..._\.\~~\
v Te e -

PRI R .
e N A - YL YN ~ S VA
& Y, NN NS, A

v- - R} »

XN

7

FRLEST.
S’n‘.l’

%
[d

et
2 S %

R
's‘
P A A

"
A

o -v";y';r'.‘f:
Yy
S

(R
b

Ve A“‘n"’x.'rt'
‘pr 2 7

LAY
<& %
L




e gA " - W -

|,

A
}; 36
T -(2 + u) - uAu = wpu
(10.1) Ix
] —(0 4+ )32 - pav = wpv, (x,y) € Q
TY ’ ’ ’ :::;
l\’
R du , 9 : !
::‘: where 6 = 5= + 2V, We obtain (10.1) from (1.35) by assuming that ':'
b Ix ay o~
u(x,v,z) and v(x,y,2) are independent of 2z and that w(x,y,z)
r = 0. The boundary conditions describing the traction free bounda-
o ry are
2
(10.2) Xn=Yn=0, (x,y) e T = 3Q,
r\ . where
- _ du 3u av
E Xn°lenx+ﬂﬁ+ﬂ(5§nx+a—§ny)
5 (10.3)
_ av du av
Yn = lOnY + l_lrn + ﬂ(a—ynx + a—yny)
i
- (10.2), with X and Y, given in (10.3) are the Neumann condi-
H tions discussed in connection with the elastic solid specialized
to the L-shaped panel.
o
f\
o We now consider the specific case in which
= _A - = M(3A+2u) _
g U—2(l+u) '3'3_—l+y——-1
) (i.e., in which A = 15/26 and wu = 5/13). v is called
w
) Poisson's ratio and E is called Young's modulus of elasticity.
:;3 G = pu 1is called the modulus of rigidity. Note that ©0 < v < 1/2
n for any material.
E: We now discuss the basic steps in the finite element approxi-
o' mation of the eigenvalues and eigenfunctions of the problem (10.1),
' (10.2), or, more generally, of any eigenvalue problem. These
k' steps are as follows:
, 1) Derivation of a variational formulation (8.10) for
2
ke (10.1), (10.2) and verification of conditions (8.1) -
112
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L]

N
i (8.3), and (8.6) ((8.1),(8.7),(8.32), and (8.33) in the N
)
. selfadjoint, positive definite case). ‘
~ 2) Discretization of (8.10) and assessment of the accuracy E
EE . of the approximate eigenvalues and eigenfunctions. The ‘
- discretization proceeds by the selection of the trial
\(1. space Sl,h and test space Sz,h' verification of
g (8.11) - (8.13), consideration of the finite dimensional
-
- eigenvalue problem (8.14), and explicit construction of ;
E:‘:_ the matrix eigenvalue problem (8.15). The accuracy of ;
the approximation is assessed by means of the application g'
E of the results of Section 8. 3-
.;': 3) Solution of the matrix eigenvalue problem (8.15). E
< The accuracy of the approximation method (8.14) depends in a i
; crucial way on the trial and test spaces sl,h and Sz,h' and §

their rational selection is strongly influenced by the available

information on the eigenfunctions, typically information regarding

N their regularity. Thus, also of importance is
X 3
17) Analysis of the regularity of the eigenfunctions. 3
!
;: Remark 10.1. The approximation methods we will discuss in this N
"o section are referred to as Ritz methods, by which we mean that the 0
l\. N
< eigenvalue problems under consideration are selfadjoint and posi- :
rf: tive definite and that the test and trial space are equal (S1 h = g
%4 ’ -
-
82 h = Sh); see the discussion in Section 8.
N ' -
o =
> 1) Variational Formulation Iy
1[.} We begin by casting our problem in the variational form N
‘ ue< H :'-:
. (10.4) -
v a(u,v) = wb(w,v), V v < H,
f 113
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where H 1is an appropriately chosen Hilbert space and a

and b

are appropriately selected bilinear forms. This process was ex-

plained in Section 3. We typically proceed as follows. Multiply-

ing the first equation in (10.1) by ¢, the second by v,

adding
the resulting equations together, and integrating over ¢, we
obtain
36 36
[ (-2 + )57 - pdule + [-(2 + u)ﬁ - MAV]p}dxdy
Q
(10.5)
= wl p(ug + vyp)dxdy.
Q
Now, integration by parts shows that
36 a6
[ {(I-( + )z - paule + [(-(1 + u);ﬁ - MAV]yp}dxdy
Q
d¢
= J (A + p)ogidxdy - J (A + p)é¢n_ds
Q r
[ du
+ #vu-vodxdy - u53¢ds
Q r
+ | (0 + 1022axay - | (A + w)own as
oy Y
“Q r
[ v
{10.6) + uvv-Vpdxdy - [ ugﬁwds
Q r
= du av) (d¢ 3y
Q
(Bu  3v1f3e 3w 26u Aw 26v Ao dxd
ite— — ) L = L - 9
* UGy T axj Ay Y ax) T Bx ay T %5y axliiaxdy

- J (Xn¢ + an)ds.
r

Combining (10.5) and (10.6) we see that if (w,(u,v)) satisfies
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%

(10.1) and (10.2), then

| a3 392 - 39
Q

Ju av) (3¢ 3y _ ,8u QE _ Q! Qg

= wJ Pp({up + vyp)dxdy
Q

for all smooth (¢,»), and, conversely, if (10.7) holds for all
smooth (¢,»), then (10.1) and (10.2) hold, provided u and v
are smooth (u,v € H2(Q)).

From (10.7) we see how to choose H, a, and b in (10.4).

Let
H = B (0)xul(Q)
(10.8)
2 2 2
H(u,v)llH = HuHI'Q + NvllllQ

and on H define the bilinear form

a(u,v; ¢,p) = [ {(x + 2u)[§§ + g%][g% + g{ﬂ
(10.9) Q

Jdu avy) (3¢ ap du 3y v Jde¢
*ullag *t ax)lay * ax| T %% 3y ~ %y ax)idxdy.
Y

It is immediate that (8.1) is satisfied and that a is symmetric.

Let us remark that a(u,v;u,v) has the physical meaning of the

(double) strain energy and that ya(u,v;u,v) is referred to as
the energy norm of (u,v). Recall from Section 8 that b 1is to be
defined on a space W > H. Let

W= L,(Q)<L,(Q)
(10.10})

.2 2 o2
II(u,V)!!w = ligh + liyi
L 0,0 0,Q
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=

o

o

= and define

i! (10.11) b{u,v; ¢,p) = J p{ud + vyp)dxdy.

‘ Q

}'-\.‘ .

Qi It is immediate that b is symmetric and satisfies (8.7) and

-~ (8.33) and that H < W, compactly. It remains to consider (8.32).
o Note that since a and b are symmetric, Hl(Q) and L2(Q) may
. be taken to be real.

J

We begin by expressing a(u,v; ¢,y) in terms of the Poisson

ratio v and the modulus of rigidity G:

. . _ .20 o) fBu 20, 3v ap
.é a(u,v; ¢,9) =30 J {(1 V)[ax 7% * 3y ay]
Q
o~ du dp . dv 3¢
1-2v{0u av) (3¢ 3y
¥ * 3 [ﬁ * a;] [ﬁ + az]’dXdY-
:”,E: From (10.12) we have
2 2
_ 26 _ du av
:,.- a(u,v; u,v) = - [ {(1 V)[[ﬁ] + [G—Y] ]
) Q
2
., du dv 1-2v {0u ov
. 2 2
2G a ¢}
:\. 2 T"—Q_V- [ {(1—21))[[3—-;] + [a'yy;] ]
Q
§ 1220[0u | Ov 2}dxd
= 2 |3y = Ox Y
Recalling that v < 1/2, we see from (10.13) that
a(u,v; u,v) 2 0, Vu,v
L
(as was to be expected from the physical interpretation), and that
-J_'.
e a(u,v; u,v) = 0 if and only if
!- 116
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u =u =c, + Cc,.Y -
C11C5:Cy 1 2 "
!l (10.14) _
v =v = C, = C,X
V. c, ,c2,c3 3 2 5'
o
;'_ for some C,1Cp:Cq- These displacements, which are characterized u,"l»
. di
"Q as having no strain energy, are the "rigid body motions," i.e.,
r. S
- translations and rotations. Thus (8.32) does not hold with H :I
Il.~
',,'.:: defined by (10.8), but the above considerations suggest that it "_:.'
ALY oy
might hold if H is replaced by a smaller space that did not .
- o
5'; include the rigid body motions. In fact, if we define :,'C
< I
::"
‘&, = . - - _ >
(10.15) H = {((u,v) € H : [ p(uuc c..c + ch c., ¢ ) dxdy = Q,
- 1'72'73 1’72’73 -
Q X
. s
o V. c,.c,iC50, b
-,
o
i then it can be shown (see Necas and Hlavacek {1970] and Knops and >
Payne [1971]) that B
E::- (10.18) a{u,v; u,v) 2 al(u v)li2 = a(!|u|i2 + ilvn2 ) E:::
’ ’ ’ = . ’ ‘H ‘1,9 ' I,Q 14 ‘.-\_
! Vv (u,v) € H, N
" :.l:'
where a is a positive constant. This is (8.32). :_,-
: - o
. We thus restrict a(u,v; ¢,») to H and b(u,v; ¢,p) to =
e (10.17) W = {(u,v) € W : J o (uu + vV ) dxdy = O
€1:€2'C3 €1:%2:C3
. Q
[ S
. v cl,cz.cs). .
';' :_:.
~ For the eigenvalue problem (10.1), (10.2) we therefore have the -_Zj:
N variational formulation :;Z
| i o
[o “ (u,v) € H Sﬂ
‘,: (10.18) _ .\_1
ot La(u.v; ¢.v) = ob(u,v; ¢,»), V (¢,») < H. ~
3
L 117 2
<7 .JN
i..\
s._\.
. R

.. " a- L e® AT A "t q..n.--t LA I P R A P B . AN 4
A e e e e SR R N ST TN NN T T




. tm- 8- < oa’ BA: aia® . - gy S et _Ia' 288 e ga - e P e .
a W - e Y - 8 - Wl W PO ACACAN A R AP g B d

-

o
BN Thus, with a, b, H, ﬁ, w, and ® chosen as irn (10.8) - (10.11),
‘ (10.15) - (10.17), we see that a and b are symmetric and con-
-

ditions (8.1), (8.7), (8.32), and (8.33) are satisfied. (10.18)
. ‘
:j is a selfadjoint, positive definite problem of the type studied at

the end of Section 8.
n
. As stated in Section 8, (10.18) has a countable sequence of
- eigenvalues
.

0 <w, s w, s ... /4w

,‘_J-
N and corresponding eigenfunctions

(u1'V1)' (u2,v2),...,

T

which can be chosen to satisfy

]

a(u

i‘ i

When implementing our approximation method it is simpler to

,vi; uj,vj) = wjb(ui,vi; u,,v,) = wjﬁij'

b I

- consider the eigenvalue problem on the space H instead of on H,
n i.e., to consider (10.18) with H replaced by H. Then Wy = 0
o will be a triple eigenvalue with eigenfunctions (u,v) given by
ft (1,0), (0,1), and (-y,x). These eigenpairs and their approxima-
- tions are then ignored. 1If the rigid body motions are included

- in the space sl,h and S2,h' then Wy = 0 1is also a triple

approximate eigenvalue with the rigid body motions again the cor-

~5
& responding approximate eigenfunctions. If this is not the case,
o then dealing with H and H does not lead to the same approxi-
- mate eigenvalues and eigenfunctions. It is easy to analyze the
}i case in which the rigid body motions are not in S1 h and 52 h'
but we will not do so. Alternately, the validity of (10.16) or
(8.32) can be ensured by considering
. 118
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a(u,v; 6,p) = a(u,v; ¢,v) + b(u,v; o,n)

instead of a(u,v; ¢,»). Then the triple eigenvalue 1 would be

the lowest eigenvalue. Usually the first alternative is used.

1’} Regularity of the Eigenfunctions.

We have seen in Section 8 that the accuracy of the approximate
eigenvalues and eigenfunctions depends on the degree to which the
exact eigenfunctions and adjoint eigenfunctions can be approxmated
by elements in the spaces Sl,h and S2'h, respectively (see
(8.23) - (8.26)). In the selfadjoint, positive definite case this
reduces to the degree to which the eigenfunctions can be approxi-
mated by Sh (see (8.44) - (8.46)). Since the approximability of
the eigenfunctions depends on their regularity, it is essential to

determine the basic regularity properties of the eigenfunctions.

The eigenfunctions (ui,vi) of (10.18) have the following

properties,
. uy and v, are analytic in Q - UAj, where Ai are
the vertices of Q. This follows from the general theory

of elliptic equations (see Morrey [1966, Section 6.61]).

J The functions u; and vi are singular at the vertices

of Aj' and the character of the singularity is known.

The strength of the singularity at A depends on the

J
interior angle at Aj. For the domain we are consider-
ing, the strongest singularity is at the vertex A_.. The

0

leading terms of u, and v at a vertex have the form

u = C,r F_(6)
(10.19)
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where (r,6) are the polar coordinates with origin at the
vertex, o depends on the interior angle and on A and
M, and FI(G) and F2(9) are analytic functions of 6.

The value of ¢ 1is characterized as the root of a nonlin-

ear equation and, in general, can be real or complex. For
our example of the L-shaped domain, o = Uy = .544481 - -
for the vertex Ao. For a more complete discussion of the

singularities of solutions of elliptic equations in poly-
gonal domains we refer to Kondratev [1968], Merigot

[1974], and Grisvard {1985]. Using their results, any

1 2 .2

eigenfunction can be written as (u,v) = (u ,v1)+(u , V7Y,

where uz,v2 € Hk(Q), where k 1is an integer which is

greater than or equal to 3, and (ul,vl) is a linear
combination of functions of the type on the right side of

(10.19) with o = 00 and with coordinates centered in

the vertices of Q. Application of the method used in

*

the proof of Theorem 2.1 shows that, for our domain, u

X
and v and thus ui and vi are contained in

O +1
H 0 (Q), with UO = .544481-- -, This statement of the

regularity or smoothness of the eigenfunctions is the

strongest that can be made in terms of Sobolev spaces

(without weights).

It is also possible to show that u,v = ?5(0), for any
3 > 00 (3 = 00 + £); see Theorem 4.4. Of course, the
AT +1
2 .
space BB(Q) is much smaller than H 0 (Q) and hence
we can make a more effective choice for Sh if we use
3 +1
32(9) instead of H 0 (Q).
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2) Discretization of (8.11) and Assessment of the Accuracy of the

Approximate Eigenvalues and Eigenfunctions

The discretization of (8.11) is accomplished by selecting the
trial and test spaces Sl,h and 52'h satisfying (8.11) - (8.13),
considering the finite dimensional eigenvalue problem (8.14), and
deriving the matrix eigenvalue problem (8.15) from which the
approximate eigenvalues are obtained. The selection of sl,h and
Sz,h is the most important part of this process. It is influ-

enced by three considerations.
a. The spaces sl,h and Sz,h have to satisfy (8.11) and
(8.12). Note, however, that if the problem under conéi—
deration is selfadjoint and positive definite, from (8.32)
we see that (8.11) and (8.12) hold for Sl,h = S2,h = Sh’
for any Sh. Our problem (10.18) is self-ajoint and posi-

tive definite and we will take sl,h = 82,h = Sh'

b. sl,h should accurately approximate the eigenfunctions of
(10.18) and SZ,h should accurately approximate the
adjoint eigenfunctions. Usually we also require that the
rigid body motion functions are included in Sl,h and
Sz,h' If this is not the case, then we have to assume
that the rigid body motion functions are very well approx-
imated. If they are not well approximated, although there
will be no change in the asymptotic rate of convergence,
the accuracy will deteriorate, especially with long
domains (such as long beams), for which the rigid body

motions for some parts of the domain could be relatively

large.
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E ¢. The matrices A and B in (8.15) should be reasonably E§fé
! sparse, since sparcity is strongly related to computation- ‘fi

Y,

‘ al complexity. Sparcity is achieved by choosing finite Eéz,
element spaces for Sl,h and Sz,h‘ These spaces then %gs.

have bases consisting of functions with local supports, .\\;

( and, as a consequence, A and B will be sparse. We :;;
B note that the sparseness of A and B is not required E;%f

! EACY

for the validity of the results of Section 8 and, in
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fact, in certain applications one does use non finite
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element type trial and test spaces, spaces consisting of
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global polynomials or trigonometric polynomials, e.g. "

ol
i
WY SR

’

#
R

4

g We now describe some typical choices for Sh for the L-shaped
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The h-Version on a Uniform Mesh K

Let Q be covered by a mesh of uniform squares Iij of size

h as shown in Figure 10.2. e
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Then for p =1,2,... let

2
'I

TS
ﬁé'

3P - ) 1 _ :E: m_n
(10.20) Sh {u : ue H (Q), uIIij Am,nx vy ., Vv Iij)'
(m,n)ed(p)
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where

Ay
's

(10.21) D(p) = {(m,n) : 0 < m,n, and m+n < p or (m,n) = (1,p)

or (p,1)}. g&gﬂ
Spaces of this type are said to be composed of elements of type Q; Eﬁgc
(the cases p = 1,2,3 are discussed in Ciarlet [1978]). Basis et
functions for these spaces can be constructed in various ways; for A
example, by means of Lagrange elements (see Ciarlet [1978]) or by %fk'

use of hierarchial elements.

Regarding the approximation properties of the family (ép)

h'0o<h’
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(3

it can be shown (see Ciarlet [1978]) that if k 2 1 is an integer,

then
u-1 k
(10.22) inf fu - xll1 o S C(p)h lhally o for any u € H (Q)
ze§§ and any h > 0,
where
(10.23) g = min(k,p+1)

and C(p) depends on p,k, and Q, but is independent of u
and h. (10.22) is optimal in the sense that h” on the right
hand side cannot be replaced by a higher power of h when the

mesh is uniform. If k 1is not an integer, then we have

(10.24) inf flu - x4, ~ < c(p)p’ " Hul

138

1,0 ﬁk(Q)’
with u given by (10.23). Note that we have not said anything
about the dependence of C(p) on p. The proof in Ciarlet [1978]
sugggests that C(p) grows with p, and thus could lead to the
conclusion that it is improper to use p > k-1. However, this
conclusion is not justified because, in fact, C(p) < Cp_(k-l);
see Babuska and Suri [1987D].

We will now derive (10.24) - (10.23) from (10.22) - (10.23)
using the method outlined in Section 2 (cf. (2.12) - (2.16) and
Theorem 2.1).

Suppose m < k < m+1. Since

lul-, = sup (tTK(u,t)),
H™(Q) 0<t<m»

where 6 = k-m, we see that

K(u,t) < t"nuu.k

H(Q)
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Let & > 0. Then for any t > 0 there exist

v, € H®(0) and w

t
e Hm+1(0) such that u = Ve + wt and
fv i o+ thw i s K(u,t) + ¢ s to)ul , e
t'm,Q Tt m+1,Q ! - ok o
H™(Q)
Therefore, using (10.22) - (10.23) we can choose Xy 1y ¢ € §E
so that
#y-d 71 o
- i I gt 3
NVt Xy ¢iy,9 ¢ C(p)h ”vt”m,Q s C(p)h (t fafl . + ),
H(Q)
where My = min(m,p+1), and
Hay-l o=l o4
i - I i gl
hWe = Xy My g 8 C(p)h "wtnm+1'9 s C(p)h (t fatl . +.£),
H™(Q)
where ”2 = min(m+1,p+1). Letting It = xl,t + 12,t' we thus
have
[T B, -1
(10.25) fJu - 2.1, o < c(p)(h * 2 +n % 71 (jur. +e),
t"1,Q k
H™(Q)
for any t > 0.
If p=>m, select t =h in (10.25) to obtain
9+/.11-1
inf llu - xl < C(p)h (lall . + £)
N 1,Q Hk(Q)
zesp

h

C(p)hk-l(dun-k +€)
H(Q)

c h =1y - + ,
(p) ( Hk(()) £)

where ! = min(k,p+1). If p <m, let t =1 in (10.25) to get

n,-1
inf lu - vl e cph b (lul., 4 e)
x=SP ' H(0)
= P irg it
cpibPrlul. o+ )
HS(0)
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=cebr ., o+l

H{(Q)
with 4 = min(k,p+1). Letting ¢ = l!un.k in these estimates
HT(Q)
vields (10.24) ~ (10.23).
Now define
(10.26) S =S = s = sPxsP

l1.,h 2,h h h “h’

We remark that the rigid body motions belong to sh (cf. (10.14)).
Since (10.18) is selfajoint and positive definite and satisfies
(8.32), we see that (8.11), with B8(h) = a, and (8.12) hold.
(10.22) and (10.24) show that Sh accurately approximates the exact
eigenfunctions. Thus (10.22) and (10.24), together with a density
argument, show that (8.13) is satisfied. If an appropriate basis
is chosen for Sh' the matrices A and B in (9.15) can be cal-
culated and they will be sparse. Thus the issues raised above in
a., b., and c¢. have been addressed.

Now consider the problem (8.14) with this choice for Sl,h
and 82'h and denote its eigenvalues and eigenfunctions by

0 < w € L. £ @

1,h N,h

and

(ullhlvllh) LN (uN'hlvN'h) ’

where N = dim Sh' To assess the accuracy of these approximate
eigenpairs, the results of Section 8 will be applied. All of the
hypotheses for these results have now been shown to be satisfied

for our problem and approximation procedure.

Theorem 10.1. Let 81 h and 82 h be selected as in (10.26).

K is an eigenvalue of (10.18) with multiplicity q,

Suppose w
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i.e., suppose @k-l < Py = @k+1 = ,.. = mk+q—1 < mk+q. Then jﬁif‘
AN
1.088962: - - _ )
(10.27) ij'h - wkl s C(p)h , J = k,...,k+g-1. bﬁ%
r:'.r::f
AN
= = - 3 S )
If (wh,zh) (uj,h'vj,h)' j k,...,k+g-1, then there is a unit Qvﬁ:
eigenfunction (u,v) = (uh,vh) of (10.18) such that
. . .544481- - - RS,
(10.28a) i = wply o * IV -zl o s C(p)h ‘ o
AR
and if (u,v) 1is a unit eigenfunction of (10.18) corresponding to TR
O
@, . then there is a unit vector (w,.z,) € :f;{
oo
ey
sp{(uk,h'vk,h)'""(uk+q—1,h'vk+q—1,h)} such that R
.544481- - - Pt
(10.28b) ha = Wiy o + v -zl o< C(p)h . B
If o, is simple, the eigenfunction estimates reduce to ﬁﬁ{ﬁ
- - .544481- - i
(10.28c) "uk,h uk"l,Q + "vk,h vk"l,Q < C(p)h . Iﬁ?
N
- 70*1 S
Proof. We saw in Subsection 1’) that “j and Vj are in H . e
with g = .544481---. Thus from (10.22) - (10.24) we have }'3,
€, = sup inf Mu,,vy) - (xg,x,)0 R
B g=k, .. ikeamt x=(xgaxydes, ) 172 "yl o)«ut o) o
o
s c(p)h °. S
(10.27) and (10.28) follow from this estimate and (8.44) - (8.46). o
a RN
To show the effectiveness of estimates (10.27) - (10.28) we :ﬂﬁa
S
SR
would have to know the exact eigenfunctions and eigenvalues. ﬁ}ﬁ(
. f\",\:',
NV

Because these are not available we consider instead the quantity

* * *

L 3
(10.29) Q(p.h) = inf af{u -x,,v -x,,u -r,, v -1

)
_ . 1 1 2 2
x=(x,.2,)¢8,
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* - .
where u and v are given in (10.19). Q(p.h) can be computed

numerically. Figure 10.3 shows the graph of

"e"E,R = [Q(P'h)/a(u*.v‘:u‘,v*)]1/2

as a function of h, for various values of p. is the

"e”E,R
relative error in the energy norm measure of the degree to which

*
(u ,v.) can be approximated by functions in S The graph,

h.
which is plotted in log-log scale, is a straight line and thus

.
"E“B,R = Ch™,

where a is the slope of the line. We see that the slope is vefy
close to the theoretically predicted a = .544481--:-. Increasing
p decreases the constant C but does not affect the slope a.

From an analysis of Figure 10.3 we can draw several conclu-
sions:

+ To achieve an accuracy of 5% (respectively, 3%) with
elements of degree p =1 we would require N to be about 25,000
(respectively, N to be about 170,000) and with elements of
legree 2 we would require N to be about 19,000 (respectively,
N to be about 124,000). This shows that a uniform or quasiuni-
form mesh is completely unacceptable for our problem.

+ Because the rate of convergence for eigenvalues is twice
that for eigenfunctions, we see that the eigenvalues are much
cheaper to compute than the eigenfunctions. Roughly speaking, we
see that for eigenvalue calculations the required number of un-
knowns would be about N = 160 (respectively, about N = 400) for

p =1 and about N = 140 (respectively, N = 350) for p = 2.
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* While (10.22) qualitatively characterizes the error beha-
vior, it does not give all the desired quantitative information

because C and lull are not known. More precise quantata-

k,Q
tive information can be gained only by a posteriori analysis. We
will not, however, be able to pursue this direction. For a survey
of results on a posteriori assessment of the quality of finite
element computations, we refer to Noor and Babuska [1987]. A pos-
teriori error analysis 1is used also in connection with adaptive

approaches, in which the goal is to let the computer construct the

mesh required to achieve the desired accuracy.
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The p-Version

In the h-version of the finite element method accuracy is
achieved by letting h\vo, while p is held fixed. 1In the p-
version of the finite element method, one, in contrast, fixes h
and lets p/ o,

Let éﬁ again be defined by (10.20) - (10.21). Regarding

the (p-version) approximation properties of the family

&P : ; =
{Sh)p=1,2,...’ it can be shown that if u = u1 + u2, where u1 €
Hk(Q), with k 2 2, and u, = KraF(G), with o > 0, then
X . -20 -(k-1). .
) - I 1,
(10.30) 1nf a 1”110 < C(h){Kp + p duluk,Q].
xesp

h

We remark that in (10.30) it is essential that the origin of Q
lies on an element vertex; for in this case, the estimate for u2
is of twice the order as would be obtained if we based our esti-

mate on the assumption that u, € Ho+1 and used the h-version

with a uniform mesh. For a proof of (10.30), see Babuska and Suri

[1987a].
Define

= = = §PxsP
(10.31) Si,p = S2,p = Sp ° Sp*Sy-

Then (8.11), with #8(h) = a, and {(8.12) are satisfied. (10.30)

shows that Sp accurately approximates the exact eigenfunctions

and thus that (8.13) is satisfied. We see that the issues raised
in a., b., and c. have been addressed. In connection with c.,
however, we observe that the matrices A and B are less sparse
than with the h-version. Note that the parameter p, which

approaches ®, is here playing the role of the parameter h in
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' Section 8, which approached 0.

Now consider the problem (8.14) with this choice for S

1,p -~
A
and 82 and denote the eigenvalues and eigenfunctions by NN
P ?::.':'-f
NN
0 < w £ ... S @ RN
1 P p N ' P :::1-:1.’
and
(ul,p'vl,p)'""(uN,p’VN,p)’

where N = dim Sp. As with the h-version, the accuracy of the

approximate eigenpairs may be assessed with the results of Section

8.

Theorem 10.2. Let 81 b and 52 p be chosen as in (10.31).

Suppose wk is an eigenvalue of (10.18) with multiplicity gq.

Then

(10.32) lo, _ - o | < C(h)p 2:177924 " = 45 _ K, ... k+q-1 e
J.p k :.:_'.' "-:

and %ﬁ Ii
O \

| -1.088962 - - AR

l - ;I -— i

(10.33) Juk,p uk“l,Q + ”Vk,p VkLl,Q < C(h)p . o
ST

Note that we have given the eigenfunction estimate the simplified jﬁ:;
AN _\‘_.

form it has when o, is simple; it would have to be modified if St
L has multiplicity greater than 1. See the statement of {gfu{
A

Theorem 10.1. ff:
SN

Proof. Suppose Wy has multiplicity g and let w be either YN
component of one of the eigenfunctions corresponding to © . We TER:
k "-\-"‘.

RS LA

have seen that w can be written in the form w = w1 + w2, where ’ﬁg&
*.‘n‘ ",
2 k . . 2 . - ‘-":n‘
w € H'(Q), with k > 3, and w is a sum of terms of the type e
(10.19) with o - T and with coordinate centers at the vertices A
AR
NI

of . Because d_ = .544481 - - in (10.19), from (10.30) we have Qﬂag
Y RV ARY

)

o - -

132 R
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o < C(h)p—1.088962' < )

(10.32) and (10.33) follow from this estimate and (8.44) - (8.46).
o

To illustrate the performance of the p-version we consider,

Yy 4
s

as with the h-version, the relative error in the energy norm mea-

X

5
o % A e

s
LA

* *
sure of the degree to which (u ,v ) can be approximated by S

L
A A

Al
ENCEN

s
b

{cf. (10.29)). PFigure 10.4 presents the graph of el as a

E,R
function of p, for various values of h. Again the log-log

] -'.')' .'-’.;
‘4

84t

scale is used. We see that the slope is close to the theoretical-

Ve

ly predicted -1.088962:--:. This is valid only for p = 3,

'

PR
DRI

recall that all our results are of an asymptotic nature.
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A
Z_.i:
B
To assess the relative effectiveness of the h- and p- %&r:
versions, to understand, in particular, their dependence on the =
5 e
choice of Sh and Sp is not easy. Here we content ocurselves ;%{'
: with a brief assessment in terms of the number of degrees of free- ﬁﬂ‘
dom: N = 2 dim Sp = dim §_ = dim S,- 1In Figure 10.5, the rela-
tive error in the energy norm measure of the accuracy is plotted i
as a function of N. Since N = h-2 and N = p2, the rates of {J

convergence shown in Figure 10.5 are half those shown in Figures

.
S
3

10.3 and 10.4. We see that with respect to degrees of freedom, <

rrlll
y N

l"'
L4

the p-version with h = 1/2 performs better than the h-version

4
4
54

4

with p =1,2,3, or 4.
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* The h-p-Version

In this version of the finite element method accuracy is
achieved by simultaneously decreasing the mesh size h and in-
creasing the polynomial degree p. We here distinguish various
cases. The major ones are:

i. Uniform mesh and uniform p distribution, (i.e., the
polynomial degree p is the same on each mesh sub-
domain, i.e., element);

ii. Refined (non uniform) mesh and uniform p distribution;

and

iii. Refined mesh and selective increase of degree p.

[
~
{!
o

We will now elaborate on cases i. and ii. Case i. obviously com- ;
bines the h- and p-versions discussed above. 1In this case one ;
has
Theorem 10.3. Let S = S = S = sP«sP  anag

1,(h,p) 2,(h,p) (h,p) h ~h

let mk,(h,p) and (uk,(h,p)'vk,(h,p)) be the associated eigen-
values and eigenfunctions. Suppose o is an eigenvalue of

(10.18;, with multiplicity q. Then

(10.34) -
o, hmin(oo,p oo) 2
'wj,(h,p) - wkl < C{min |h 7, 200 Y . J =k,...,k+tg-1,
P
and
(10.35) ; -
00 hmln(ao,p 00)
! -u, I - |
", ) 10t Yk, (h,p) VKMo ¢ Cimin R 20, '
P
where 00 = .544481--+ and C is independent of h and p.

Proof. The basic approximation results for this type of approxima-
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; N
: tion were proved by Babuska and Suri [1987b]. (10.34) and (10.35) ;?f,
follow directly from these results and (8.44) - (8.46). o '
n," ST
) l\”‘i
In case ii. we will consider only geometric meshes with ratio ng
[} F:' )
! factor .15; see Figure 10.6. This ratio is close to optimal. kﬁ&'
A
- PP - X P .
! The space s(h,p) thsh is now more complicated. Sh is defined 7]
A .\-'._-'
' oY R
-;.,:...
: §g = {u € Hl(O) : u|I is the image of a polynomial Eﬁﬁ
K j.j ‘:-' e
in a square L
J‘N'.'
. '_'.f:‘.-
S = {(£,n) : l&l,Inl = 1} A
p N
A or a triangle T
o
3 T={((6,n) : 0sns&, 0s¢€sx 1}, ]
L) .'.'._'.
. N
for all subdomains Iij in the mesh}. 53;
SOV,
For a more detailed description of SE see Babuska and Guo ;:-j
%N
y {1987b, c] and Szabo [1986]. For a thorough discussion of the yQ:
o
ﬁ LY
h-p-version in the one dimensional setting, we refer to Gui and
. MOACH
Babuska {1986]. DA
e
. Figure 10.7 shows the performance of the p-version on meshes Cj{’
3 _:v';l

with various numbers of layers n, as well as the performance of
> the p- and the h-versions for uniform meshes. We typically see
a reverse S curve for the accuracy of the p-version on a geo-

metric mesh. The first part of the curve is convex and then it is

-
concave, the slope approaching N 0. The h-p-version appears as

the envelope of the p-version on geometric meshes with various
numbers of layers. This envelope shows the optimal relation be-
tween the number of layers and the polynomial degree. 1In Babuska

and Guo [(1987b]), it is shown that if u € 3;(0), with 0 < 3 < 1,
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A Using this approximation result and the results of Section 8, we g%
obtain !
=
Theorem 10.4. Suppose the components uy and vy of the eigen- E$§v
functions belong to 82 (in our case R = .544481-'- + £). Then kj
with a proper choice of geometric mesh and the degree p we have -
~2ayN 3
(10.36) o, p = 9kt = Ce N
: and ST
;’:ﬁ (10.37) My o = Welly g IV o vl s ce ¥, \
;‘ where a depends on the ratio of the mesh, the relation of P :ik
. and the number of layers, and the domain, but is independent of fii
A ERICS
.. N. el
Proof. (10.36) and (10.37) follow directly from the results of o
Section 8 and the above estimate for HeHElR. o ggz
Figure 10.7 clearly shows the effect of the proper selection ;Ei'
of meshes and element degrees on the effectiveness of the finite e
- element method. It also shows that the optimal choice depends on 3?
l the required accuracy. The design of the mesh and selection of ;?
' .
the degree of the elements is a delicate task. Various approaches "
NG
3 to deal with this problem are in the research phase. One promis- 2&\
~ ing approach is to apply the principles of artificial intelligence ﬁ;i
. (expert systems). For further details we refer to Babuska and {§i1
p Rank [1987]. Figure 10.7 shows only the dependence of the accu- ;E:
y oy
’ racy on the number of degrees of freedom N. It is also essential ;?~
to judge the complexity of the method with respect to such factors e
. as number of operations, computer architecture, user's interaction, g&z
? etc. For a detailed study of computer time, accuracy, and perfor- %i;
o
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NN
mance for various numbers of degrees of freedom, we refer to :}{
'u'\
A &.A =
' Babuska and Scapolla [1987]. We can see directly from Fig 10.7
-
DA
that the proper mesh design leading to an accuracy of 5% has 2 ;f ‘
. \ '
AL
5 layers (the ratio of the sizes of elements is of order 50) and ;: )
e
E p = 3. For an accuracy of 3%, the optimal p is 3 or 4 and .
l\ -
FR A
the number of layers is 2 or 3 (which leads to size ratios ﬁt{
E from 50 to 300). The number of degrees of freedom is 200 - 300 :;j‘
ey
(compared with 25,000 - 170,000 for a uniform mesh and p = 1). S
)
F _:\:'_-.
A
3 3) Solution of the Matrix Eigenvalue Problem. ;gi
.':\",
We have seen that the approximation procedure developed in Wy
» ™
Section 8 leads from the eigenvalue problem (8.10) or (10.18) to 3@3»
.'I\-f
the generalized matrix eigenvalue problem (8.15), and that the Lfﬂ
A
matrices A and B in (8.15) are sparse if the bases for the N
trial and test spaces are properly chosen. From the error esti- N
mates in Section 8 we know that the low eigenvalues of (8.15) jif,
e
(approximately 10% of them) give reasonable approximations to :ﬁk,
the exact eigenvalues. In fact, we have proved convergence for .ﬁfﬁ
each fixed eigenvalue, but convergence does not occur for a fixed -
¥ percentage of the available eigenvalues. If A and B have }“?“

dimension N, then N approximate eigenvalues are available, but

w[aN],h_*w[aN] as N—®, where 0 < a <1 and [aN] is the

¥ integral part of aN. The 10% figure we mentioned above is
related to engineering accuracy and practice only. The size of

. the matrix problem will thus be much larger than the number of

eigenvalues we are attempting to calculate. The matrix eigenvalue

solver, a crucial component of the complete computational proce-

dure, should therefore be designed to effectively find the low

- e P e o v et P I - PO R S R R S LSRN S T B T At
AT I A L e N N - e - . .
o
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eigenvalues of large, sparse, generalized matrix problems. An
appropriate version of the Lanczos algorithm is suitable for this
class of matrix problems and is often used in practice. We refer
to the monographs by Parlett [1980] and Cullum and Willoughby
[1985]. Because the extraction of the eigenvalues is very expen-
sive, various "tricks" are used in engineering practice to reduce
the sizes of the matrices under consideration. We will not go

further in this direction.

Remark 10.2. It should be emphasized that, generally, the goal of

the computation is to find, in addition to the eigenpairs, certain
functionals of the eigenfunctions (u,v) — e.g., the stress infen—
sity factors, which are combinations of the derivatives of u and
v. We will not pursue this direction since it lies beyond the
scope of this article. We refer, e.g., to Babuska and Miller

[1984]) and Szabo and Babuska [1986].

Remark 10.3. The complete computational resolution of an eigen-

value problem is influenced by a wide range of factors. Some of
the most impcrtant of these — the smoothness of the eigenfunctions
and the approximation properties of the trial and test space, e.qg.
— have been discussed in detail. Others — the accuracy of the
matrix eigenvalue solver and the relation between the accuracy of
the matrix solver and the error “e h T @k e.g. — have not been
mentioned or have only been mentioned briefly. While these latter

factors are important, we will not be able to pursue them. We

also note that the important function of a posteriori analysis of

computed data has not been discussed. Likewise we have not dis-
cussed any adaptive approaches. For some ideas on the assessment
143
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! of the quality of the finite element computations we refer to the :ji:;
S
! survey paper of Noor and Babuska {1987].
l:; .:
B. Vibration of a Membrane -::»-
. W~
E We consider here the eigenvalue problem associated with the :;’:
h small, transverse vibration of a membrane stretched over a bounded "
’ "'-“'n
region Q in the plane and fixed along its edge T =3Q, i.e., \f&
sy
the eigenvalue problem :"%:
. ,:-'
N -Au = 1u, in Q S
A (10.38) Pt
u=0 on T :::
g hOSY
(cf. Subsection 1.B., in particular, (1.27)). We turn now to a ‘;:,';:
; :.f::.'
2 discussion of the basic steps 1), 1'), 2), and 3) (cf. Subsection W
[
.
A. above) in the finite element approximation of the eigenpairs of :';-.:j
(10.38). The discussion can be brief since these steps are simi- ;{;(“
> lar for the two problems (10.1) - (10.2) and (10.38), in fact for ;-':3'
- . Ay
any eigenvalue problem. rk"_
. 1) Variational Formulation ::_
-~ (10.38) is a special case of problem (3.1) and the variation- ;'.:‘\".:
N S
> al formulation (3.18) of (3.1) was derived in Section 3. Thus we T
P see that the variational formulation of (10.38) is given by
. 1
ue H (Q), u~x O
") 0]
(10.39) du 8v du dv _ 1
J[é-;{-r)("a_Yé_YdXdY—K uv dx, Vv v € HO(Q).
) Q Q
/- Let
[6u av du dv) [
- hathg = JyV
. a(u,v) J Ax ax * 3y ayldXdY u-Vv dxdy
S Q ’ Q
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be defined for u,v € H = Hé(Q), and let

b(u,v) = [ uv dx
Q

be defined for u,ve W = L2(Q). Then (10.39) has the form of
(8.10), and a and b are symmetric forms, (8.1), (8.7), (8.32),
and (8.33) are satisfied, and H ¢ W, compactly. All of this can
be easily seen for the concrete problem we are considering; it also
follows from the more general discussion in Section 3. (10.39) is

a selfadjoint, positive definite problem. It has eigenvalues

0 <Ay €A, s e A

and corresponding eigenfunctions

LA PR
which can be chosen to satisfy

Vu, Vv, dxdy = 2,| u,u, dxdy = 6,
1 J J i)
Q Q

1) Regularity of the Eigenfunctions

From Theorems 4.1 - 4.4 we obtain the following regularity

results for the eigenfunctions ui of (10.39) (or (10.38)).

*) For k=2, if T =938Q 1is of class Ck, then u; =

% (0).

+) If T is of class C~, then uy € c®Q).

) If T is analytic, then u, is analytic in Q.
) If QO 1is a curved polygon with analytic sides and with
vertices A, ,A,,..., then u, is analytic in Q - UAj.

u; is singular at the vertices; the strengths of the
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singularities depend on the interior vertex angles.

Moreover, u € Bi(Q) for properly chosen &,

2) Discretization of (8.10) and Assessment of the Accuracy of the

Approximate Eigenpalrs

Suppose Q 1is a polygon. By a triangulation or mesh on Q

}M(T)
i'i=1
+ each Ti is a closed triangle,

M(7)
= U ’
i=1

we will mean a finite family v = (T satisfying

+ for any Ti and Tj € T, Ti Tj = or a common vertex
or a common side,
For 0 < o < m, a triangulation 7 is said to be a-regular if

the minimal angle of every triangle T € v is greater than or

equal to a. For any 7, let

h = h(r) = max diam T

i=1,...,M(7) i

h(r) = min diam Ti'
i=1,...,M(7)

T is said to be g-quasiuniform if

h(r)

_Ii.sz <

We will often view triangulations 71 = n 2s parameterized by h
= h(r) and consider families y = (v} = (Th) of triangulations
that are a-regular. An example of a mn/4-regular, l-quasiuniform

triangulation of the domain Q = {(x,y) : -1 < x <1, -1 < vy < 1}

is shown in Figure 10.8. It is called a uniform triangulation.




=

Y Y
h X
i =
I |
| =

Figure 10.8. A Uniform Triangulation.

For T a triangulation of Q@ and p =1,2,... let

Sp(T) = {u : ue HI(Q) : u|T a polynomial of degree p,
for each T € 7}

and let

Sg(T) = sP(r) n Hé(Q).

Regarding the approximation properties of Sp(T) and Sg(T), if
k 2 1 (integer or non integer) and p > 1 and if » = {v} is a

family of a-regular triangulations of Q, then

(10.40a) inf flu-tl < ch(”ﬂ_1 il
-40a SRS DY e = wa A
xesP(r) P

for any u € Hk(Q) and for any 7t € p,

=,
.

and
-1
h(7)

. RIS ) c o= ____ iy ,

(10.40Db) inf llu 1“1'0 < C -1 taly o
resg(l) P
_ .k 1
for any u € H (Q) n HO(Q) and for any 1t < j,
147
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where ;?
:J‘
¥
(10.41) u = min(k,p+1).
The constant C in (10.40a,b) is independent of p, v, and u, ;
but depends on Q,k, and a. For a complete proof of these esti- y
Yy
mates we refer to Babuska and Suri [1987b]. _
Now define ok
(10.42) s =3 =S = sP(r). =
1:(h:P) 2u(h:p) (h'P) 0 * -
-
Since (10.39) is selfadjoint and positive definite and satisfies o
RS
(8.32), we see that (8.11) and (8.12) are satisfied. (10.40b) Q;
R
shows that S(h ) accurately approximates the exact eigenfunc- ‘d
~
tions and thus that (8.13) is satisfied. If a suitable basis is 'ﬁ
chosen for S(h D)’ then the matrices A and B in (8.15) will i;
’ -'.‘
: &
be sparse. The issues raised in a., b., and c¢. 1in Subsection
A.2) above have now been addressed for this choice for S(h D)’ :S
Note that in using the notation S(h p) We are identifying h = ﬁ;’
4 4’-
~
h(r) with v. An alternate, and more explicit, notation would be X
S(v.p)" 7
Now consider problem (8.14) with S,  defined as in b
{10.42) and denote the approximate eigenvalues by _
1,(n,p) * " N, (h,p) \
and :'n.
Y1,(h,p) """ "'UN,(h,p)’ s
where N = dim S(h p)" To assess the accuracy of these approxi- ﬁﬂ
’ \:;
mate eigenpairs, we apply the results of Section 8, obtaining @
-
Theorem 10.5. Let S(h D) be selected as in (10.42) and suppose NS
A,
148 @
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Aj is an eigenvalue of (10.39) with multiplicity gq. Then

h2u-2
(10.43) Ile,(h,p) - XJ-I < C;é‘i‘(‘__zl £ = Jee.sJ+g-1,
and
h#~1
)
(1044 95, (thopy ~ Pile Cpk—1'

where k 2 1 is such that the eigenfunctions corresponding to kj
are in Hk(Q) and u = min(k,p+1). Note that we have given the

eigenfunction estimate the simple form it has when A, is simple;
it would have to be modified in the general case. See the state-

ment of Theorem 10.1.

Proof. Suppose lj has multiplicity g. Then (10.39) has eigen-

functions L EERRRL S PP associated with lj; by assumption,

these eigenfunctions are in Hk(Q). Thus, by (10.40) - (10.41),

we have
(10.45) £, = max inf ha, - xll
h £ 1,Q
=j,...,j+g-1 S !
J J+a-1 xSy o)
el pH 1
s C max ha,ll = C_E—_'
k-1 £ ,Q —
P 1 =3j,...,3j+q-1 k ) & 1

(10.43) and (10.44) follow directly from this estimate and (8.44)

- {8.46). a

Remark 10.4. If our membrane is free instead of fixed along its

edge, then we would have considered the Neumann boundary condition

g% = 0. In this situation the eigenvalue problem would have the

variational foundation

ue€e H, ux O
(10.46)
a(u,v) = Ab(u,v),
149
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where a and b are as above, but

H={u:ue H(Q), J udxdy = 0},
0

Hally, = "“”1,9-

We would choose

{fu : ue sp(r), J udxdy = 0}
Q

S(h,p)

for the trial and test space. Then all of the hypotheses in Sec-
tion 8 are satisfied, approximation results similar to (10.40) can
be proved, and for the approximate eigenpairs, the error estimates
{10.43) and (10.44) follow. We note in particular that the
Neumann boundary condition is only implicitly stated in (10.46),
i.e., is natural, and thus that the boundary condition need not be
imposed on the trial and test functions. This fact makes imple-
mentation easier, especially for domains with curved boundaries.
See the discussion of natural and essential boundary conditions in

Section 3.

3) Solution of the Matrix Eigenvalue Problem

The comments made in Subsection A.3) apply here as well.
Multiple Eigenvalues

The results proved in this Subsection and in Subsection A.
cover the case of multiple eigenvalues. Recall that the estimates

for llj,(h,p) - kjl and Jju - “j”l,Q are in terms of

j.(h,p)

£, = max inf tu -zl '
h i 1,Q
£=1,..., = S '
1 X554, (h,p)

where q 1is the multiplicity of Aj and Uy oeeauy are the
1
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corresponding eigenfunctions. We now make some comments on mul-

ALY
LA

tiple eigenvalues and then make an application of the refined error

T 757
.3

estimates for multiple eigenvalues proved in Section 9. '3‘\
!¥.
l*.
¥ The eigenvalues and eigenfunctions of the membrane problem on :i‘
vy
a square, i.e., the problem
A
oS
-Au = Au on Q e
(10.47) o
u=0 on T, _:;:
where -
LY ;':,
I Q = ((x,y) : Ixl,lyl < =}, oo
:::\»
SN
] are easily seen to be given by :;:
_ 2 2 "".“'l
) lk,t’ k™ + £ ::_
. RN
= and -3
.\:_\
u = sin kx sin €y, k,€ = 1,2 .
k’c ’ ’ ’ R e
Hence ve see that there are multiple eigenvalues. (10.47) is I:
- .:_\:
. typical of problems with symmetries ((10.47) is symmetric with :-'_';-
~:{.
respect to xXx and vYy), and we thus see that multiple eigenvalues
- -2374.
are common in applications. :,-‘f‘_:
N0
. ‘A,
1- For i=1,2,..., let lk be an eigenvalues of (10.47) of ;::;\:
. 1 RS
multiplicity q;. i.e., suppose =73
N A
A <A, =1 = ... =2 <A <A . ™
\ k-1 k, k;+1 k +q -1 k+q, kj+1 i::-
VLY
Note that we are here using the notation introduced in Section 10, ;;.%
:ﬁ whereby k1 =1, k2 is the lowest index of the second distinct ,"
eigenvalue, etc. Suppose now that qi >1, 1i.e., that lk is "N_
i AV
multiple. Let {Sh) be any family of finite dimensional sub- ;
v spaces of H(l)(Q) satisfying (9.14). Recall from Section 7 that :j::"_
o
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the qy approximate eigenvalues

A b oeeed A _
ks, h k;+q;-1,h

converge to lk . While these approximate eigenvalues may be
i

equal, i.e., we may have one distinct eigenvalue with multiplicity
q;- consideration of the situation in which we choose Sh to be
SI(T), where 1t is the triangulation shown in Figure 10.8., shows
that they may not be equal, since some of the symmetries present

in (10.47) are not present in the discrete problem. Nevertheless,

Theoreom 10.5 provides estimates for each of the errors

'lki+j—1,h""’lki+j—1" J = 1,....9;. As we have seen the esti-

mates are

2
M +3-1,07 k +3-1! = %n
(10.48) = C[ sup inf Hu—xﬂl Q]2,
usM(r, )resl(r)
ky
j=1, 'Qy
which suggest that the error in kh K, +j-1 depends on the degree

i
to which SI(T) can approximate all of the eigenfunctions corres-
ponding to lk .
i

Recall that in Section 9 (Theorem 9.1) we proved refined

estimates, namely,

. 2 _
(10.49) 'kki+J~1,h-lki+j—1| < Cei'J(h), i= 1,...,qi,
where
ci'J(h) = inf i?f
ueM(A ) xS (1)
k
i
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= 0.

a(u,u

Kk ,h) = ,.. = a(u,u

_ )
i ki+j 2.h

Now for the specific problem (10.47), all eigenfunctions have the
same smoothness properties and Sl(T) with v given in Figure
10.8, will approximate them all with the same asymptotic accuracy
and (10.48) and (10.49) would each lead to the same estimate in
terms of h. The multiplicative constants in the estimates could,
however, be different. We further note that there are eigenvalue
problems for which the different eigenfunctions corresponding to a
multiple eigenvalues have strikingly different approximability
properties. For such problems (10.49) would provide a striking .
improvement over (10.48).

As an example of such a problem, consider

¢
_[T’T%?)' u'(x)] = A-‘pl(x)ul xe I = (—nln)l

(10.50) u(-m) = u(n),

where

p(x) = "-alx|1+asgn X, 0 <a < 1,

It is easy to check that the eigenvalues and eigenfunctions are as

shown in Table 10.1.
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Table 10.1

Eigenvalues and Eigenfunctions of the Eigenvalue Problem (10.50)

i li u
0] 0.0 1
1 1.0 cos ¢(x)
2 1.0 sin ¢o(x)
3 4.0 cos 2¢(X)
4 4.0 sin 2¢(x)
. ; .

We see that 11 = 12, 13 = A4, etc.

We cast this problem into the variational form (10.1) by

choosing
n 2 1/2 n
H = {u(x) : llul = ‘:,’ dx < ®, u(-m) = u(n), [.,,'udx - o},
nw
veye 1
a(u,v) = Itzv e dx,
~n
and
n
b(u,v) = uve’'dx.
-n

With these choices (8.10) is equivalent to (10.50), with the

understanding that the eigenpair (Ao,uo) = (0,1) of (10.50) is
not present in (8.10). Note that Juj = Nu“a. Let Hqu =
(b(u,u))l/z. The assumptions made in Section 9 are clearly

satisfied. Our approximation is defined by (9.4) with

sl,h = 32'h = Sh = {(u€H : u linear on

(-n+jh, -m+(j+1)h), j = 0,1,...,n-1},
where h = 2n/n and n 1is an even integer.
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- Now this choice for (Sh) it i1s easily seen that
2 2
! (10.51) inf licos ¢(x) - xll_ = Ch
" Xesh
38
» and
. (10.52) inf |Isin @ (x) - XH2 * Ch1+a.
v xes a
h

’--
[N Hence from Theorem 10.1 we would expect 11 h and l2 h’ the two
-~ approximate eigenvalues that converge to the double eigenvalue 11
d = A,., to have different convergence rates.
Eg From Tables 10.1 and 10.2 we can find the errors in Ah i i

=1,2,3,4, for a = .4. These errors are plotted in Figure 10.8

in log-log scale. We clearly see the different rates of conver-

1.4 for

e gence, specifically seeing the rates h2 and h1+a = h
' the errors in li,h' for i =1,3 and 1 = 2,4, respectively,
as suggested by (10.51) and (10.52). It should be noted that the
estimates presented in Theorem 10.1 are of an asymptotic nature in
that they provide inforﬁation only for small h (or large n),
i.e., for h (or n) in the asymptotic range. From Figure 10.8
we see that for a = .4 we are in the asymptotic range gquite
quickly, say for n 2 16,

Consider u and u

- 1,h
corresponding to

2. h' the approximate eigenfunctions

ll,h and l2,h’ respectively, normalized by

. H'HD = 1. The results of Section 9 suggest that U h should be
53 close to C cos ¢(x) and u2'h close to C sin o(x) (cf. (10.51)
f‘ and (10.52)), where C 1is such that C sin ¢(x) and C cos ¢(x)
are normalized by H'HD =1, i.e., C = #1215 illustrate
this point we have computed Cii) and C;i), 1 =1,2,3,4, so
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that
_~(1) _ (1) =
"ui,h C1 cos ¢ (Xx) C2 sin ¢(x)na, i=1,2
K(i) =
_ali) _ A1) =
”ui,h C1 cos 2¢(x) 02 sin 2¢(x)ua, i= 3,4
is minimal. We would expect that
(2) (4) (1) (3)
(10.53) C1 ’ C1 ' 02 ' 02 Q
and
(10.54) ci” = céz’ = cis) = c;” ~ C = .564189583...

Table 10.2 shows some of the results for a = .4. We see clearly

the results predicted in (10.53) and (10.54). Table 10.2 also

shows that K(1) < K(2) and K(3) < K(4), as we would expect.
The last columns in Table 10.2 and Figure 10.8 show that the

ratios

i,h i
increase as h—0. This shows that in the whole h-range we con-

sidered, the approximate eigenvalues converging to a multiple

eigenvalue are well separated.
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o Table 10.2 Z
Numerical Solution cf the Eigenvalue Problem (10.50) for a = .4 -
'
. i) (i) vl h M a4 ™
b O R S K(1) ) c; —— N
P i,h i .';:.
1| 1.0716754| .2704 O] .5637791 0]-.1124891 -16] 1.5562955
E; g |2] 1.1115481| .3423 0|-.4151973 -13| .5636998 0 EQ;
3| 5.0394692| .1075 +1| .5558919 O .1317809 -12| 1.1943249 .
iﬁ 4| 5.2414639]| .1191 +1| .5022638 -13| .5516234 O ;53
t 1| 1.0175850| .1329 0| .5641633 0| .1596754 -12| 2.0041570 .
Q 16 |2 1.0352431} .1831 0|-.8916589 -12| .5641519 O &E'
N 3| 4.2691915| .5259 0| .5636643 0| .1124328 -13| 1.2575063 e
X 4| 4.3385100| .5869 0|-.2689727 -12| .5637697 O gz
: 1] 1.0043740| .6618 -1| .5641879 0| .6411454 -11| 2.6003887 )
. 3» |2| 1-0113741| .1067 0| .1323421 -10| .5641830 O EE
b 3| 4.0666055| .2589 O .5641561 0| .1970954 -10| 1.4067517 -
4| 4.0936974| .3067 0|-.7375504 -10| .5641613 O )
ii 1| 1.0010921| .3305 -1]| .5641895 0] .7729760 -9| 3.5190001 -
64 |2| 1.0038431| .6202 -1| .8670648 -9| .5641883 O ;?:
- 3| 4.0166006| .1289 O .5641875 O .3641341 -10| 1.6437659 e
. 4| 4.0272875| .1653 0| .1415775 -8| .5641858 O gg
!. 1| 1.0002729] .1651 -1| .5641895 0| .4535626 -7| 4.9215830 K.
! 128 |2| 1.0013431| .3665 -1| .3251219 ~-7| .5641893 0 jgl
. 3| 4.0041468| .6440 -1| .5641895 0| .4409247 -7| 2.0107071 o
2% 4| 4.0083380| .9135 -1{-.9705611 -8| .5641890 O o
1| 1.0000682| .8255 -2| .5641896 0| .8070959 -5| 7.0542522 _'
E? a5 |2| 1-0004811| .2193 -1| .7269570 -6| .5641895 O &;
3| 4.0010365| .3217 -1| .5641896 0| .6435344 -6{ 2.5706705 :;,
Q: 4| 4.0026645| .5162 -1|-.2601000 -6| .5641895 O ::':;~
"N 3
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s Consider next the case when @ = ,01. Table 10.3 presents >
~
! the same results for @ : .01 as Table 10.2 does for a = .4, r
Figure 10.9 shows the graph of o
o e
. .
; A A :
log i+1,h - "i+1 L i=1,3. by
A - A
" i,h i
N >
N as a function of the number of intervals n in a semi-logarithmic "
DY scale. The computed values are indicated by O0's and x's. The :
ny '
graphs are formed by interpolation (solid lines) and extrapolation '
Y
;j (dotted lines). We note three related phenomena that did not occur ..
o with a = .4. For small n the approximate eigenfunction associ- o)
e :'
» ated with A is u S 4 1/2 gin ¢(x), in contrast to u, |, =~ .
1,h i1,h 1,h PN
?2 "-1/2 cos o(x) when a = .4. We remark that ”-1/2 cos p(x) is ﬁf
more easily approximated by sh than is "~1/2 sin ¢(x) for all g.
il 0 <a < 1. This anomaly is present for n < 64 but for n 2 128 .
. we get results which are in agreement with the (asymptotic) results af
' 2
- in Section 9. For la h and 14 h ve have to take n 2 256 to j
’ ’ -"‘
! get results which agree with the asymptotic theory. Ry
w7 w
For a = .01 we see that K(2) < K(1) for small n(n < 64) NG
., [
:3 and K(2) > K(1) for large n and K(4) < K(3) for small :}
-~ n(n<128) and K(4) > K(3) for large n. Recall that K(2) > A
w K(1) and K(4) > K(3) for all n when a = .4.
o~ Finally we note that when a = .01 the ratio
A -
= A —~ A
1;1.h . 1i+1' i=1,3, 5
: i,h i hd
’ el
RS
. first decreases as n increases, then for some n the two eigen- .:’
'\' ‘e
| value errors become equal, and then the ratio increases again. -
e, This is in contrast to the case for a = .4, in which the ratio :f
2
159 o
e
T _\\ e A e e e O AC )




increased over the whole range of n values. We further note
that the value n for which the eigenvalue errors are equal —

n>70 for i =1 and n> 160 for i = 2 (see Figure 10.9) —

marks a transition in each of these situations from u1 h x> "—1/2
sin ¢(x) to u, = a2 cos p(x) and u, , = a2 gtn 29 (X)
to u, , = " 1/2 o 20(x), from K(2) < K(1) and K(4) < K(3)
Me1,h T Mist
to K(2) > K(1) and K(4) > K(3), and from Y 1
i,h i
1,3, decreasing to increasing.
We have thus seen that for a = .4 the numerical results are

in concert with the (asymptotic) results in Section 9 for the whole
range of n considered, while for a = .01 they are in disagreé—
ment for small n, but are in agreement for large n. We now make
an observation that further illuminates these two phases of error
behavior — the pre-asymptotic and the asymptotic. Toward this end
we note that if (ll,ul), with "“1"b =1, and (kl,h'ul,h)’

with 1, are first eigenpairs of (9.1) and (9.4), res-

pectively, then

_ _ 2 _ 2
0= Ay p =2 =y pmuly = Ay puglly
(10.55) = inf (lx-u i? - A fa-u, i)
) . 1 a 1 1'b'"
xeSh
hxlty,=1
If Al is a multiple eigenvalue, then the u, in (10.56) can be
any corresponding eigenvector with ““1"b = 1, (Note that we are

here assuming u, and ul,h

in (10.2) and (10.5) they are assumed to have H-Ha—length equal

have u~ﬂb-1ength equal 1, whereas

to 1.) The first lnequality in (10.55) follows from the minimum
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principle (8.35) and has already been stated in (8.42). The first

equality in (10.56) follows immediately from Lemma 9.1 with (A ,u)

~

= (A and A = a(ullh,u = A If x € S

1 1,h’ 1,n’ 1,h°
with “x”b = 1, then from the minimum principle (8.35),

,ul), W = u h

(10.56) 11’h - Al < alx,.x) -

Again from Lemma 9.1, this time with with (A,u) = (A ,ul), w =X,

1

and A = a(x,x), we have

2 2
- = _ - - i
(10.57) ao(x,z) A hx ulua llux ulLb.

1

The second eqguality in (10.55) follows from (10.56) and (10.57).

It is clear from the above discussion that u, can be any eigen-

vector corresponding to A

L
From (10.55) we have
(10.58) A, ,-A_ s lx-u 2 - A _lx-u %, vz e s with Jxi, = 1.
: i,h "1 ° 1 a 1 1"p’ h b
If x is H-Ha—close to u,, to be more precise, if 1 is taken
to be the a-projection of u, onto Sh (cf. (8.17)), then the

second term as the right side of (10.58) is negligible with respect
to the first term. This follows from the compactness assumption
made in Section 9. On the other hand, if Hul-IHa is not small,

11 h " Al may still be small because of cancellation between the

two terms on the right side of {(10.58). Regarding the case a =

.01, this explains why for h large {(the pre-asymptotic phase), we

-1/2

can have > m sin ¢ (x}) and K(1) > K(2), and yet have

1.0

lh 1’ the approximate eigenvalue associated with closer to

1,0’
11 than is 2 the approximate eigenvalue associated with

‘2,h’
Uy h n—l/z cos ¢(x), while for h small (the asymptotic phase},

161
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1

we have 4 o = "—1/2 cos ¢ (x), k(1) < k(2), and 11 h closer to

showing that the eigenvalue error, A - A,

A than is A ih i

1 2,h’

is governed by inf [lx-u
1€Sh

The analysis of example (10.50) we have presented is taken

2
1"a'

from Babuska and Osborn [1987].
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Table 10.3
Numerical Solution of the Eigenvalue Problem (4.1) for a = .01
o il o, | xw e ol ‘hearsTin1
! h,i i
1] 1.0520268| .2338 0] .8181940 -1: .5634386 0} 1.0171143
8 21 1.0529172 .2268‘ Ol .5645965 01-.2916448 -11
3] 4.8576239] .9593 O0|-.9346720 -13| .5597529 0 1.0164293
41 4.8717141 .9615 Ol .5604533 0] .1167277 -11
1] 1.0128661 .1223 O .8717399 -10| .5635957 0] 1.0111689
16 2| 1.0130098{ .1052 O .5647369 0{-.8480131 -9
31 4.2088367| .4650 O0Of .2507177 -10] .5636658 0] 1.0087030
4| 4.2106542| .4577 Of .5642694 0[-.3101833 -10
1] 1.0032139| .7274 -1|-.9345818 -9| .5636031 0! 1.0068764
32 2] 1.0032360| .3568 -1}| .5647430 O .1273043 -7
3| 4.0515675| .238B4 O .3745461 -9| .5638178 0| 1.0057284
4| 4.0518629| .2205 O .5644172 0(-.4115544 -9
1y 1.0008063} .5369 -1|-.1311961 -5} .5636032 0] 1.0017363
64 2{ 1.0008077 .3398 -1 .5647430 0 .2462939 -7
3] 4.0128623 .1343 O} .2743681 -7 .5638240 0j 1.0035997
4| 4.0129086| .9792 -1 .5644235 0 .3196172 -8
1| 1.0002018| .4196 -1 .5647430 0| .3356056 -5} 1.0064420
128 2] 1,0002031 .4775 -1 .7414162 -6| .5636032 0
3! 4.0032196| .9166 -1 .2379072 -6| .5638239 0y 1.0010860
4| 4.0032230| .9745 -2 .5644235 0f .1197135 -5
1} 1.0000504 .4372 -1 .5647429 .1061527 -4 1.0218254
256 2] 1.0000515 .4614 -1}-.1553659 -4 .5636031 0
3] 4.0008054 .5011 -1 .5644234 0[-.2123278 -4| 1.0031040
4] 4.0008079} .7741 -1 .1165012 -5{ .5638238 0
163
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Eigenvalue Problems for General Second Order Elliptic Opera-

C.
tors.

We consider here the approximation of the eigenpairs of gene-
ral second order elliptic operators. This problem is, in large
part, similar to those discussed in Subsections A. and B. above;
we will thus be brief, discussing in detail only those issues that
have a treatment in this case that differs from that for the L-
shaped panel or the membrane, or those issues that did not arise
with those problems.

Consider the eigenvalue problem

(Lu)(x) = A (Mu)(x), x € Q
(10.59)

(Bu)(x) = 0, x T = 38Q,

where Q is a polygonal domain in R®, L is given in (3.2), M
in (3.3), and B in (3.4), L is assumed to be uniformly strong-

ly elliptic (cf. (3.5)), a b.,c, and d to be bounded and

ij'rUi
measurable, and d to be bounded below by a positive constant
(cf. Section 2).

In Section 2 we saw that (10.59) has the variational form

(8.10), (cf.(3.18) and (3.20)), with H

1 .
1 H2 = HO(Q) in the case

Ha

of Neumann conditions, and a and b given in (3.14). (8.1) -

of Dirichlet boundary conditions and H1 Hé(o) in the case

(8.3) hold, (8.2) and (8.3) being a consequence of (3.5), provided

p?
2a '

29
(10.60) Re c(x) =z — +
2 0

where b = max !b, (x)! (cf. 3.17). We remark that (10.60) can
x< Q)
i=1,2

be easily achieved. It does not hold for the given operator L, L
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can be modified, by adding an appropriate multiple of d(x) to
c(x), so that it does hold. This change shifts the eigenvalues
and leaves the eigenfunctions unchanged. We also see that (8.7)
is satisfies with W, = W, = LZ(Q). Thus (10.59) has the form of

1 2
the problem analyzed in Section 8.

<
h}

We remark that in this subsection, since we are not imposing

-

TS
5

-
x

7

any selfadjointness assumptions, the spaces H and S1 (h.p)

S2 (h,p) must be taken to be complex and the eigenvalue parameter

2

S

A must be considered complex.
As we have seen, the selection of the trial and test spaces

Sl,(h,p) and SZ,(h,p) is guided by the regularity properties of

-

the exact eigenfunctions and adjoint eigenfunctions. In general,

v

P
r2Y

s'
5

determining this regularity and then using it to choose effective

-

J,.r’

‘-
w

trial and test spaces is a delicate task. The regularity can

depend on the coefficients in the differential equation, e.g., on
where they have discontinuities and where they are smooth, and on
the domain, as we have seen with the L-shaped panel. We will not

go further in this direction, but will instead assume the eigen-
k

functions belong to H 1(Q) and the adjoint eigenfunctions to
k

H 2(Q), and select trial and test spaces so as to reflect this

assumption.

Remark 10.5. For eigenvalue problems with rough coefficients,

which arise in the analysis of vibrations in structures with rapid-
ly changing material properties (such as composite materials) it is
known that the eigenfunctions do not lie in any high order Sobolev
space. Nevertheless, for one dimensional problems, their regular-

ity can be understood and, based on this understanding, one can
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A
;
b select trial and test spaces that lead to very accurate and robust ﬁﬁ,
>
approximations. These trial and test spaces are not of the usual
A
d o
polynomial type, but instead closely reflect the coefficients. :é:
. . AN
- For details see Babuska and Osborn [1983, 1985]. Cf. also Subsec- :i
. *'
tion 11.C.
i :b“
Remark 10.6. The mathematical study of the use of regularity %ﬁ
"
. o
- ™
b, information for the optimal selection of trial and test functions !
belongs to the area of complexity and information based approaches. ?;
; i
- See, e.g., Wozniakowski [1985]. iﬁ?
NN
.
N Based on the information that the eigenfunctions lie in :E;
B k k . -
H 1(Q) and the adjoint eigenfunctions in H 2(Q), with kl'kz 2 pﬁi
oo
LS )
v 1, it is appropriate to discretize (8.10) by choosing é;
. Pﬁ
o] < s s s O
SO(T), for Dirichlet conditions
S =S =S = %
(h.p) 1,(h,p) 2,(h,p) Sp(v), for Neumann conditions, ?ﬁ

as in Subsection B., where v = }» and y = {(t} = {Th} is a fami-
-~ ly of a-regular triangulations of Q. (8.11), with B(h) = a0/2, %}:
and (8.12) follow from (3.5). (8.13) follows from (10.40). Eﬁ&
-~
< (8.14) (or (8.15)) can now be considered and from it we get .
3 eigenpairs (l(h,p)’u(h,p)) which serve as approximations to the Eés
| eigenpairs (iA,u) of (10.59) (or (8.10)). The errors in the :i
% approximate eigenpairs can be estimated Qith the results of Sec- :g;
“ tion 8. E;;
- Let: A be an eigenvalue of (10.59) (or (8.10)) with alge- :ii
" braic multiplicity m (by which we mean that 1—1 is an eigen- ?S
value with algebraic multiplicity m of the compact operator T ;;
- e
- introduced in (8.8)). Recall that N
R
167 -
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M(A) = the unit ball (with respect to HI(Q)) in the space

of generalized eigenfunctions associated with 1,

x
M (A) = the unit ball in the space of generalized adjoint

eigenvectors associated with .

From (10.40b) in the case of the Dirichlet problem and (10.40a) in

the case of the Neumann problem we have

C(h,p)(X) = sup inf {u - XUI

,Q
usM(i) 1€Sh’p

h”l—l
o sup

k. -1

haily, o
p 1 ueM(1) kl'Q

My = m1n(p+1,k1), and

®
£ (h,p)(l) = s?p inf Jlv -
veM (L) nes

M,-1
h 2

"“1,0
h,p

=3 sup iull

. k,,Q"
P veM (1)

2I
u2 = min(p+1,k2).

Let ll(h,p),...,lm(h,p) be the eigenvalues of (8.14) that

converges to A, let

Mh p(1) = {u : u in the direct sum of the generalized eigen-
spaces of (8.14) corresponding to the eigen-
values Al(h,p),...,lm(h,p), “““1,0 =1},

and let a = ascent of (A 1 - T).

Applying Theorem 8.2 we have

m
(10.61) |» - (& j;x (h,p) " H ™ ¢ e (A)e o (V)
' m j P - Y (hp) 'V h,p)
j=1
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YA av ‘g & ot r R TRt e ‘o m’h b st . S 8 Solh 428 7

i’ -
hrlﬂlz 2
< i | i il .
< C_E;?E;:— uf;?k)“udkl'M sgp thkZIQ
p i veM (1)
In light of Remark 8.1 we also have
m
1
A - n z (h,p))
(10.62)
U +#2
< Chk % sup Iullk M sup (vl Q°
’ ‘ ’
p 1 ueM(1) 1 veM® (1) 2
From Theorem 8.3 we obtain
- /
hu1+u2 2 l/a
(10.63) |rA-r (h,p)| s Cl—_—p———5 sU lail su hwi
jeP Kk +K,-2 ueM?k) ky oM WP k,.Q
p veM (1)

Regarding eigenfunction estimates, we apply Theorem 8.1 and

8.2. From Theorem 8.1 we have

(10.64) 5(M(k),M

(A)) < — sup Hull .
(h,p) kl 1 ueM(A ) kl,Q

Let ir(h,p) be an eigenvalue of (10.1) (or (8.10)) such that

\.'C\J""’

lim A {(h,p) = 2 and let w is a unit vector satisfying
h-0 (h,p)
p—od) e
(l(h,p)—1 - T) 1w(h p) = 0 for some positive integer 61 < a.
Then, from Theorem 8.4, for any integer 82 with 81 < 82 o,
-1 )
there is a vector u(h,p) such that (a - T) (h,p) 0 and
- £ -¢
hul 1 ]( 9 1+1)/u
(10.65) bua - W i < C -7 sup “u"
(h,p) (h,p) 1,0 [ k,-1 ueM(A) kl,QJ
o
Remark 10.7. 1In this section we have considered triangular meshes.
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One could also consider quadrilateral meshes, which are a general-
ization of the type of mesh employed in Subsection A., or curvili-
linear meshes. Since these generalizations properly belong to

approximation theory we will not pursue them. We refer the reader

to Ciarlet [1978], Babuska and Guo [1978b], and Szabo [1986].

Remark 10.8. We have mentioned here only estimates based on the

information that u € Hk(Q). If we know, e.g., that u < BE(Q),

then we can say more, provided a proper mesh is selected.

Remark 10.9. The approximate eigenvalues kj(h,p) here, as in
any finlite element method, are defined by the eigenvalue problenm
(8.14), which involves integrals over the domain Q. In practice
these integrals often must be evaluated (approximated) by quadra-
ture formulas. For estimates of the eigenvalue error due to this
quadrature error we refer to Fix {1972]. We note that the use of
a finite element method in conjunction with a gquadrature method
often leads to a finite different method for eigenvalue approxima-
tion. For example, if we approximate the eigenvalues of

{—Au = A, on Q

u=0, on T
with the finite element method corresponding to p =1 and a uni-
form triangulation (cf. Figure 10.8) and evaluate the resulting
integrals with an appropriate quadrature formula, we obtain the
standard 5-point difference eigenvalue approximation for the
Laplacian (cf. Section 5). This observation is due to Courant
[1927, 1943]. For further results on finite difference methods we
refer to Polya [1952]), Hersch [1955, 1963], Weinberger [1956, 1958,

1974], Hubbard [1961, 1962], Kuttler [1970a,b], and Kreiss [1972].
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Remark 10.10. Since the eigenvalue lj(h,p) are defined by a

Ritz method, they are upper bounds for the exact eigenvalues Aj:

A. s A.(h,
j J( p)

{(cf. (8.42)). If we could derive a lower bound Xj(h,p), then
one would have bracketed Xj. Much attention has been directed to
the derivation of lower bounds. Weinstein [1935, 1937, 1953, 1963]
developed the method of intermediate problems. Many authors have
contributed to the development of this and other related varia-
tional methods. We mention D.H. Weinstein [1934), Aronszajn and
Weinstein [1942], Aronszajn [1948, 1949-50], Weinberger [1952a;
1952b, 1956, 1959, 1960), Bazley [1959], Bazley and Fox [1961a,
1961b, 1963]. In addition we mention the monographs by Collatz

[1948], Weinstein & Stenger [1972], and Weinberger [1974].

Remark 10.11. Most books and monographs that treat finite element

methods contain a section or chapter on eigenvalue problems. For
a survey of books and monographs on finite element methods we refor
to Noo. [1985]). Of the more mathematically oriented of these, we

mention Strang and Fix [1973], Oden and Reddy (1976], and Oden and

Carey [1982].
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Section 11. Approximation by Mixed Methods

In Section 3 we saw, in terms of an example, how eigenvalue
problems can be given mixed formulations. Mixed formulations can
be discretized and thereby lead to approximation methods referred
to as mixed finite element methods. 1In this section we discuss
three such methods. We begin by presenting an abstract result

designed for the analysis of mixed methods.

Remark 11.1. Mixed methods for source problems have received con-

siderable attention. We mention Hermann [1967], Glowinski [1973],
Johnson [1973), Oden [1973], Brezzi [1974]), Ciarlet and Raviart
{1974], Mercier [1974], Scholz [1976], Raviart and Thomas [1977],
Brezzi and Raviart [1978], Falk [(1978], Babuska, Osborn, and

Pitkaranta (1980]), and Falk and Osborn [1980].

A. An Abstract Result

Let V,W,H and G be four real Hilbert spaces with inner

products and norms

(':')V' ”'“Vu (':')wl ”'“wl ("')H: “'!‘H; and

(-,-)G, u-uG, respectively. We assume V c H and W c G. Let
A(o,p») and B(w,u} be bilinear forms on HxH and VxW, respec-

tively, that satisfy

(11.1a) Ao ,w)| = CIHGHHHwHH. vV o,p €

.4(|d

| -
(11.1b) IB(y.,u)l < Cllwll linll,, Vv eV, ue W
We assume A(0,»p) is symmetric and satisfies

(11.2a) A{(o,0) > 0, VO = o < H,

and assume
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{11.2b) sup |B(»,u)!l > 0, V0O » u € Q.
peV

We then consider the following eigenvalue problem:

(o0,u) € VxW, (o,u) = (0,0)
(11.3) A(o,y) + B(p,u) =0, Vyp e V

B(o,v) = =A(u,v) VwvewWw

G !
A discretization of (11.3) is obtained by selecting finite dimen-

sional spaces Vh < V and Wh C W and considering the approximate

eigenvalue problem

m

(oh,uh) thwh, (oh,uh) = (0,0)
(11.4) A(oh.w) + B(w.uh) =0, Vpe Vh

B(oh,v) = —kh(uh,v)G, VvV ve wh.

We then view (lh,(oh,uh)) as an approximation to (A,(o,u)).
Given bases for Vh and wh, (11.4) becomes a matrix eigenvalue

problem.

Remark 11.2. I1f we let

a((o,u),(y,v)) = A(o,») + B(p,u) + B(o,v),

b((a:u)l('piv)) = —(u'V)Gf

and
H= VW,

then (11.3) can be written as

(0,u) € H,(o,u) » (0,0)
(11.5)

a({(o,u),(y,v)) =Ab((o,u),(v,v)), V (v,v) = H,

which has the form of (8.10). Also (11.4) has the form of (8.14)
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S1.,h ©
satisfy all of the hypotheses of the results in Section 8. We

with Sz,h = thwh. {11.3) and (11.5) do not, however,
thus need an alternative analysis. This will be provided by Theo-
rem 11.1, which is based on the results of Section 7. Note that
even though the methods considered in this and the next section
are not covered by the results of Section 8, it is still useful to
discuss them, to the extent possible, in terms of the basic step
1), 1), 2°), and 3) introduced in Section 10.

In order to estimate the error in the approximate eigenpairs

(lh,(ah,uh)) we consider the associated source and approximate

source problems:

Given g € G, find (o,u) € V<xW satisfying
(11.6) A(o,p) + B(p,u) =0, Vyp eV

B(o,v)

'(g:V)G; V vV € W;

Given g e G, find (oh,uh) € thwh satisfying

(11.7) A(Uh,w) + B{(w,u =0, Vype V

n)

B(oh,v) = —(g,v)G, V ve wh.

h

We assume (11.6) and (11.7) are uniquely solvable for each g ¢« G.

We then introduce the corresopnding component solution operators:

S : G—V
(11.8a) ,
Sg = o,
Sh : G—V
(11.8b)
Shd = %ne
IT G—G
LTg = u,
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(11.8d)

<
> o
(‘l"

Thg

L L
'
\

%‘k} "

where (o,u) and (oh,uh) are defined by (11.6) and (11.7), res-

."
(X

o

'l{ ()
X

pectively. {Note that the T introduced here is different from

)
2

that introduced in (8.8).)

o .'.
N
,"',:'1‘ g ,./ 4

)

The eigenpairs (A,{o,u)) of (11.3) can be characterized in

. 'l...'.. N )
Nhh

Is

terms of the operator T. Before establishing this we note that

- A(o,0)
" (u,u)

&

A ., Which shows that A > 0. This follows from (11.3)

G -

and the observation that both components u and ¢ of an eigen-

R
NCHESE

Vo
N
Py
)

vector are nonzero. Now, if (A,(o,u)) is an eigenpair of

"

N
»
v SN E Y

(11.3), then ATu = u, uw 0, and if ATu = u, u = O, then there

f"f'.""l',-'
L] , , .'

is a o € V(o = sS(Au)) such that (1,{(o,u)) is an eigenpair of
-1

5

Y
5/-

{11.8). Thus A is an eigenvalue of (11.3) if and only if 2
is an eigenvalue of T. The correspondence between eigenvectors
is given by ue—(o,u). In a similar way the approximate eigen-
values defined by (11.4) can be characterized in terms of the

eigenvalues of Th. lh is an eigenvalue of (11.4) if and only if
-1

lh is an eigenvalue of Th; the correspondence between the

eigenpairs is given by u «— (0

h h'¥n) -

We assume

| -
(11.9) T ThHGG—eO as h—o0,

where, for an operator A : D(A)(cX)—Y, we let
|
iAWl

= sup ~———.
wsD(a) ""'g

(In particular, we assume T 1s a bounded operatorn on G.) Since

dim R(Th) < v for each h, the Th are compact and (11.9) thus
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N

implies T is compact. We also note that T 1is selfadjoint on
G. This is seen as follows. Let v = Tf in the second equation

in (11.6) to obtain

B(Sg,Tf) = —(g,Tf)G.

Again consider (11.6), but with g replaced by f, and let & =

Sg in the first equation to get

A(Sf,Sg) + B(Sg,Tf) = O.

From these two equations we have

(11.10) (g,'rf)G = A(Sf,Sg), V f,g € G.

Using (11.10) and the symmetry of A we get

(Tg,f)G = (f,Tg)G = A(Sg,Sf) = A(Sf,sg) = (g,Tf)G,

showing T is selfajoint. 1In a similar way we see Th is self-

adjoint.
We now apply Theorems 7.3 and 7.4 to the operator T and
family of operators (Th) on the space G. By virtue of the

correspondence between the eigenpairs of T and Th and those of

(11.3) and (11.4) we will thereby obtain estimates for the errors

in (lh,(oh,uh)). The hypotheses have all been shown tc be satis-

fied; cf. Remarks 7.5 and 7.6. Let 1_1 be an eigenvalue of mul-

tiplicity m. Since |IT - T
1

h“GG_*O we know that m eigenvalues

1 -1

ll(h) ,....km(h) of Th converge to A ~, Since T and Th

are selfadjoint the relevant ascents are one and all eigenvalues

have equal geometric and algebraic multiplicities. Let ﬁ(\-l)

be the eigenspace of T corresponding to 1} 1. Recall that M =
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- -1
M(A» ") = R(E), the range of the spectral projection E associ-

ated with T and A ), We have denoted this space by M to dis-

tinguish it from the set M of normalized eigenvectors introduced

in Section 8.

Theorem 11.1. Under the assumptions made above, there is a con-

stant C such that

2
IL-Xp(h) | < CUI(S=Sp) | gy + H(S=Sp)| Hg i (T=T )] lgy
M M M
(11.11)
- 2 _
+"(T_Th)lﬁ"GG}' €=1,...,m.

Proof. Let u .»u_ be an orthonormal basis for ﬁ(l—l). From

17

Theorem 7.3 with a =1 we have

-1

Tl T 2

m
C(i:§;1|((T_Th)ui'uj)Gl * T | i)

A

(11.12) €=1,...,m.

For g,f ¢« G we estimate ((T - Th)g,f)G. Adding the two
equations in (11.6) and recalling the definitions of Tg and Sg

in (11.8) we find
(gtv)G = ‘A(SQ,UJ) = B(w'Tg) - B(sglv)l v (U"V) e V<W.
Setting v = (T—Th)f and o» = (S—Sh)f vields

(11.13) (g, . (T-Ty)f); = -A(Sg. (S-S, )f) - B((S-5,)f,Tg)

- B(Sg,\T—Th)f).

Next note that substraction of the equations (11.7) from (11.6)

w.:*h 3 replaced by f) gives
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(11.14) A((S-S)f,») + B(w,(T-T )f) + B((S-S,)f,v) = 0,

, 7
5

(zplv) € thwh' '.:’,:f

Now, combining (11.13) and (11.14) and using (11.1) we have ﬁ?ﬁ}
I(g.(T~Th)f)Gl = lA((S—Sh)f,Sg—w) + B((S-S, )£, Tg-v) :r

+ B(Sg-p,(T-Tp)f) | st

< Clll(S-Sh)fllHHSg-vllH -t A

+ CZH(S—Sh)fHVHTgthw NN

+ C,lISg-pll Il (T-T ) £, S

Setting v = Shg and v = Thg gives Ry

| ((T-T,)g. £) g1 s C (S-S )£l (S-S, )glly L

B
o e

{11.15) + Czn(S-Sh)vaH(T—Th)gﬁw

AN

AN

(S I T
O

0
Ny

+ Ci (S-S ) gl (T-T, ) Ell .

Uy’

RN
o

’l

«
i
oa
i

’

Letting g = uy and f = u._j in (11.15) yields {n'kf

A

2 AR
(11.16) I((T—Th)ui,uj)GI CiM(s-8.) ' gx el

+ 2C2H(S—S HGVH(T—T

h)lﬁ h)lﬁ“Gw'
(11.11) follows immediately from (11.12) and (11.16). o NI

Theorem 11.2. Under the assumptions made above, there is a con-

stant C such that

(11.17) swmupi e CHT=Tp) |y g

Proof. This result is an immediate consequence of Theorems 7.1
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and 7.4.

form it has when X is simple,

Note that we have given this estimate the simplified

and it would have to be modified

in the general case. Cf. the statement of Theorem 10.1 and (8.44)
— (8.46). Q

Theorems 11.1 and 11.2 were proved by Osborn [(1979] and by
Mercier, Osborn, Rappaz, and Raviart [(1981].
B. A Mixed Method for the Vibrating Membrane

We consider, as in Subsection 10.B., the vibrating mem-
brane problem

{—Au = Au, in Q
(11.18)
u=0, on I =9Q,

where Q 1is a convex polygon in R2, but we will here give it a
mixed variational formulation. Otherwise we will proceed in a
parallel way, discussing in turn the steps 1), 1°), 2), and 3)

introducted in Subsection 10.A.

We will clearly see how the vari-

ational formulation influences the entire approximation method.

Before proceeding with the variational formulation,

duce an additional function space. Let

H{div,Q) = (0o = (01,02) o4 HO(Q)

17

m

2

z = div q <

gl

HO(Q) such that I o+V¢ dxdy
Q

z6 dxdy, V ¢ ¢ cg(O)},
Q

2

o2 + (div o)?)dxdy.

= {fo 2 +0
"H(div,Q) 1 2
0

1) Variational Formulation

Suppose (A,u}) 1is an eigenpair of (11.18),
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0« ue HINQ)
(o}
(11.19) J Vu-Vv dxdy = AJ uv dxdy, V v € Hé(Q),
Q Q
i.e., we will assume (11.18) to have the variational formulation

considered in Subsection 10.B. We now derive a mixed variational

formulation for (11.18). Introduce the auxiliary variable

(11.20) o = Vu.

From (11.19) we see that o € H(div,Q) and
(11.21) div o = -Au.

From (11.21) we get

(11.22) J v div o dxdy = =~A J uv dxdy, V v € HO(Q)
Q 0

and from (11.20) and the definition of H(div,Q) we have
(11.23) f o*p dxdy = [Vu-w dxdy = —{ u div » dxdy,
Q Q
V » € H(div,Q).

Combining (11.22) and (11.23) we obtain

”

(0,u) € H(div,0)xB®(Q), (v,u) « (0,0)

J o*p dxdy + J u div p dxdy O, V p € H(div,Q)
(11.24) <°Q Q

~

v div o dxdy —l] uv dxdy, V v € HO(Q).
“Q Q

Now suppose (2,(7,u)) satisfies (11.24). Let u be the

Y

AN
[d

. b
h ..“- , :,5, '
s

4.



solution to ' JQ@

(11.295)

and let s

o = vu. 5,

Then, by the argument used above, -

r(E,G) e H(div,0)~H%(Q) ~§t.

IA: “
A
-{‘u'

?.
.

, l‘n’sn‘.,{’_'
r &)

}i

J o+p dxdy + | u div p dxdy = 0, V » € H(div,Q)
(11.26) <7 Q Q

ﬂl ;.r

[}
-
k3

<,
'

v div o dxdy

-1[ uv dxdy, V v €0H (Q) .
Q Q

.~
S AT
&

"

e
5y
R
o0

e

Subtraction of the equations in (11.26) from those in (11.24)

CeEL
s
AR

vlelds

)

~

(0-G, u-u) € H(div,Q)xH(Q)

J (6-0)+p dxdy + [ (u-ﬁ)div p dxdy = 0, V » € H(div,Q) 'TA?

Q Q
(11.27) 1

J div(o-0)v dxdy = 0, V v « HO(q).
Q

In (11.27), if in the second equation we take v arbitrary in
HO(Q) we get div(o-o) = 0, and if we then take v = 0-0 in the

first equation we obtain 0 = J (0-0)+ (0-0)dxdy, which implies
Q

(11.28) o =0.

Then the first equation in (11.27) implies

(11.29) } (u-u) div p dxdy = Q, V p € H(div,Q).
Q
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Let w satisfy Aw = u-u and let p = Vw in (11.29). Since

div » = u~-u, this choice leads to
(11.30) u = u

(11.25), (11.28), and (11.30) show that (A ,u) is an eigenpair of

(11.18) {or (11.19)), and that o = Vu.

In summary, if (A,u) 1is an eigenpair of (11.18) and ¢ =

EE Vu, then (A,(u,0)) satisfies (11.24), and if (Ar,(o,u)} satis-
v fies (11.24), then (1,u) 1is an eigenpair of (11.18) and o = 7u,
%' (11.24) is the desired mixed formulation.

ﬁé It is immediate that (11.24) has the form of (11.3) with

V = H(div,Q),

Ww=3 =H(),

ﬁ B =#°(Q),

'.»j'_::
E: A(o,p) = J o«yp dxdy, ol
. Q :(,':_'

and

X

>
[}

B(yp,u) = [ u div p dxdy.
Q

P

g |

Furthermore, A is symmetric and (11.1) and (11.2) hold. The

[ el S )
PR

symmetry of A and (11.1) and (11.2a) are trivial. To prove
tﬁ (11.2b), let w solve Aw =u and set u» = Vw. Then div v = u

and we have

(X
R
sup IJ u div » dxdyl : |J u div » dxdy|

gj peH(div,Q) 0 0

2 T
. = u” dxdy N
o N
'.-l Q \:."
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“
. e
- , 0 A
” >0, for 0= ue€ H (Q), -{"_
A
which proves (11.2b). d
u'l:s a
From the fact that (11.18) has a sequence of positive eigen- E{‘
o
: values and from the correspondence between the eigenpairs of E:’
YT
(11.18) and (11.24) we see that (11.24) has a sequence of eigen- .
o . ’l '
“u '.f‘- ¢
- values e
i
& O<lls 125 Y ::::
- and corresponding eigenfunctions NN,
.. 4 1Y }
. (0 ug)e {Tg up) ey R0
Y ‘ 0!
with Gj = Vuj and with the (kj,uj) being the eigenpairs of Lk
N
‘, (11.18). i
1’) Regularity of the Eigenfunctions RO
; If (o,u) is an eigenfunction of (11.24), then u is an S
S K 1-‘- i
';~ eigenfunction of (11.18) and o = Vu. Thus the regularity of NN
2 \~.\ ']
o
(o0,u) can be inferred from the regularity of the eigenfunction N
n of (11.16), which was discussed in Subsection 11.B. Zéf
X
. 2) Discretization of (11.24) and Assessment of the Accuracy of e
. == R
. o
the Approximate Eigenvalues and Eigenfunctions '
Q. :P'\;
ro We will use a discretization of the general foirn o (11.4). }ﬁ{
. It thus remains to select the subspaces V, < H(div.,?) and W, - %E{
oy HO(Q). This will be done with an eye toward ensuring (11.9) holds R
. and the terms on the right side of (11.11) in Theorem 11.1 are ':f
. T
v P
small. A mixed method approximation of the associated source ?5
: A
4 -
problem (cf. (11.6) and (11.7)) has been proposed and analyzed in p
’d
AN
Raviart and Thomas [1977]. We will take their choice of trial and e
N
183 ;
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DA

test functions. The source problem has also been analyzed by Falk

and Osborn [1980].

Let T be the unit triangle in the (£ ,n)-plane whose verti-

- - -

ces are a, = {1,0), a2 = (0,1), and a3 = (0,0). Then with

p 2z 0 an even integer and T associate the space Q(p+1) of all

functions » = (p»,,p,) of the form
1 2

p+1

P p/2+1_p/2
vy polp(t.n) + aot + alt n+ ... + 25 n '

P/

- p+1
¥y polp(t.n) + Bon

P/2 P/7+1

p
+ Bltn + ... + p/zt

where polp(E,n) denotes an arbitrary polynomial of degree p

and where
p/2

> -ntay-ag = o,

i=0

and with p 2 1 an odd integer and T associate the space

- -

Q(p+1) of all » of the form

- p+1 . P (p+1)/2_(p+1)/2

1 polp(&,n) + aOE + al” n o+ ... + a(p+1)/2E n '
- p+1 P (p+1)/2 (p+l)/2
Yy polp(E,n) + Bon + Bltn + ...+ B(p+1)/2f n )
where

(p+1)/2 (p+t1)/2
i i -
(-1) a; = }E {(-1) Bi = 0.
i=0 i=0

We remark that for d € 6(p+1}' él and Jz are polynomials of
degree p+l1. With a general triangle T in the (x,y)-plane, we

(p+1)
T

associate the space Q defined by
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+1 ‘ 1 - -1 " +1
QP*Y) o s wixey) = B (FLN(x,y)), p e PPy,
T JT T T
where FT(K,n) = BT(K,n) + bT is the linear transformation map-

ping T onto T and JT = det(BT).
Let y = (1t} = {Th} be a family of a-regular triangulariza-

tion of Q. Then for p 2 0 an integer 1let

(11.31a) V, = {(w < H(div,Q) : wlT S Q(p+1) VTe

h T ! h)

and

(11.31b) wh = {u e HO(Q) : u|T polynomial of degree p, V T

M
~

Now we consider (11.4) with this choice for Vh and Wh.'

(11.4) will have eigenvalues

Ao S o Meun

and corresponding eigenfunctions

(Gl'h'ul’h) LA I(ON’hluN’h) ’

where N = dim thxWh). It remains to derive error estimates by

applying Theorems 11.1 and 11.2.

Theorem 11.3., Let vh and wh be selected as in (11.31). Sup-

pose the eigenfunctions of (11.18) belong to Hp+2(o). Then

_ < 2p+2
(11.32) Mg p = Al e C{p)h
and
_ . p+1
(11.33) 1y “k”o,o < C(p)h .

Proof. We begin by showing that all of the hypotheses of Theorems

11.1 and 11.2 are satisfied. We have already noted that A is
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symmetric and that (11.1) and (11.2) are satisfied for the problem

(11.24).

The source problem (11.6) is uniquely solvable for each g €

G = HO(Q). fn fict the unique solution is (o,u), where
-Au = g
u € Hé(Q)
and
c =Vu
(cf. the discussion in 1) above). To see that (11.7) is uniquely

solvable for each g € G it is sufficient to show that g = 0
implies %h and u, are zero. Now g = 0 1implies, using the

second equation in (11.7), that B(oh,v) =0, VvewWw Setting

n

» = 0y in the first equation and using this fact shows that

A(oh,ah) = 0 which, together with (11.2a), shows that o, = 0.

h
Then, using the first equation in (11.6) again we get B(w,uh) = 0,

Vye Vh. For our specific problem this is j u, div » dxdy = 0,
Q

V »p € Vh' It is shown in Raviart and Thomas [1977, Theorem 4]

that corresponding to any u, € wh there is a p € Vh such that

div »p,. = u_ . Using this » we thus have lu Izdxdy = 0 which
h h 0 h

implies u, = 0.

It remains to check (11.9). Falk and Osborn [1980, Section

3(d)] have shown that

ch?jTgy,. ., for p > 1
2,Q
I Tg - Ttho Q
! Ch Hngz o’ for p =0
(11.34) ’
< C h;ng'Q, for p 2 O,
186

. . vt T T T T e T R N - UETCCTR
MRS -_'\ \ " 'u '\' L \!"\- -4':' .;-...‘:-'_-' 4 n. * "J ). w* -- -' -' -1' -'\-f-\. *‘f - -'\-‘\. \. .. >\

R

A ll2)
SRR
PR A A

v
/]

...
[3
P

PR
W

..
LA
l’".l"(.{.

PR s
4 W N

¥
%

o’ -‘( *
L
n

e S

AR AN
F 2N |{ "l"‘l'. v.l.,

ENCT I
L)

7

'}ﬁﬂﬂﬂﬁf
PR A

o

\
‘a




e e R S, W

ety

L AR
v e

oy X,
2 ?‘n, -'

L' "4 r.‘;.'_"-_'
.'.Q g N o

which provaes (11.9).
We now apply Theorems 11.1 and 11.2. From Raviart and Thomas

(1977, Theorem 5] we have

1 (s-s, )l chP*l + ligl )

o .= MS=Sp)daliyi4iv,0) * HTal 5ia 0

1%() p+1,Q

¢

and

: « cpP*?
=Ty gl o = ChP UNTal L, o + Nal .y o)

If g € ﬁ(kil), then Tg = l;1g and g is an eigenfunction of

(11.18) corresponding to lk and by our hypotheses, ||g|lp+2'Q <
o, Thus
(11.35a) Hs-s )| I 4 o < chPtl,

M H (Q),H(Q)
(11.35b) i(s=sp) | I 4 < chP*l,

M H (Q),H(div,Q)
and

_ . p+1

(11.35c) HT-T ) | _lIb o o < ch" 7.

M H (Q),H (Q)

{(11.32) follows immediately from Theorem 11.1 and estimates
(11.35). (11.33) follows immediately from Theorem 11.2 and

(11.35c).

Remark 11.3. Theorems 11.1 and 11.2 estimate the errors in mixed

method approximation of eigenpairs in terms of error estimates for

the corresponding source problems. For our problem, these were
mainly provided by the results of Raviart and Thomas ([1977].
Note, however, that estimate (11.34) — the estimate that ensures

the approximate eigenvalues converge — is not proved in Raviart

and Thomas [1977]).
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; 3) Solution of Matrix Eigenvalue Problem

The matrix problem (11.4) with Vh and wh given in (11.31)

is large and sparse, but is not positive definite.
.
& C. A Mixed Method for the Vibrating Plate
k The eigenvalue problem
- A2u = Au, in Q
N (11.36)
b _ %u _ .
U = ae = 0, in Q
E: arises in connection with the small, transverse vibration of a
R clamped plate. A commonly used variational formulation of (11.36)
is
2 2
[, u € HO(Q), u= 0
o
(11.37) 2
J Au Av dxdy = A [ uv dxdy, V v € HO(Q).
Q Q
“d
N/
. A finite element method based on (11.37) would require trial and
test space that were subspaces of Hg(Q), and this would require
v Cl—elements, i.e., piecewise polynomials that are C1 across
\ inter-element boundaries. 1In order to avoid this requirement we
will use a different variational formulation for (11.37), one that
?; permits the use of Co—elements. We do, however, use (11.37}) to
; show that (11.36) has a sequence of eigenvalues
" 0<115A25.../®
L~
* and corresponding eigenfunctions
3
LI PRI
LE' which can be chosen so that
. 188
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l Aua, Au, dxdy = 1, l u,u, dxdy = &6, ..
[T S A A B e A R AR &
Q Q
1) Variational Formulation
Introduce the auxiliary variable ¢ = -Au. Then (11.36) can

be written as a second order system:

o + Au =

-ACc = Au,

_ Gu

Y= &n

Multiplying the first equation by

grating over ¢, and integrating

0 = oy dxdy
JQ

= oy dxdy
Q

= op dxdy
Q

and

\J uv dxdy

Thus we arrive at the variational

o, in Q

in Q

0 on T.

», the second by v, inte-
by parts leads to N
( <
+ Aup dxdy NG
-\.A‘
Q _1"
N
[ du -
- VuVp + [ a—l'-l y ds ~~.
‘Q r o
. 1 .x.

~ Vu*Vy dxdy, V p € H (Q)

.
Q %)

~[ Aov dxdy

Oy
Vo-Vv dxdy - J T Vv ds
Q r

Vao«Vv dxdy, V v -
Q

1
}i() {(Q).

formulation :



>

s

v

9. !

""
Pty

T |

( 1 1,
(oc,u) € H (Q)‘<H0(Q), (o,u) = (0,0)

[ oy dxdy - J Vu+:V¥p dxdy = 0, V p € HI(Q)
(11.38) <

Q Q

- [VO'VV dxdy = —Aj uv dxdy, V v Hé(Q).
Q

We derived (11.38) formally from (11.36). One can, however,
easily make the argument rigorous with the aid of a well-known

regularity result: If w 1is the soclution to

where Q is a convex polygon and f = HO(Q), then w 2 H (Q)

and liwt < CHEDN cf. Grisvard [1985] and Kellogg and Osborn

3.Q 0.0°

[1975]. We assume Q@ is a convex polygon in the remainder of this

subsection. Using this result we can show that if (i,u) 1is an

eigenpair of (11.36} and 7 = -Au, then (41, (7 ,u})) s an eigen-
pair of (11.38), and if (v, v, 1s an eigenpair of (11.38),
then ' . u) 1s an e'genpalr c¢f (11.36) and v = -\u. {11.386) has

the form - 11 3" w.*h

V i
W H
H o~
\ | Ixdy
O
.
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20
(A
» B(y,u) = [ Vp.Vu dxdy. W)
Q Nt
v It is easily seen that A is symmetric and that (11.1) and (11.2) %E‘
~ 3
3 are satisfied. :j'_“_
\ &*- . ¢
(11.38) has eigenvalues o
L) . '(
L) 0 }.
- O<A, s, < ... ® ]
1 2 S
: S
¢ and corresponding eigenfunctions 3¢~
’ N
. (al,ul), (oz.uz),..., e
« ,.:J.
) with o, = -Au.. LA
J J .jx_:
. 1’) Regularity of the Eigenfunctions 3};
If (o,u) is an eigenfunction of (11.38) then, as we have fo
' ;.\h
! seen above, u 1is an eigenfunction of (11.36) and ¢ = -Au, and {;;
:{. ‘
hence the regularity of (o,u) can be inferred from the regula- Hé\
rity properties of (11.36). For results on this later regularity ;Q}
. question we refer to Grisvard ([1985]) and Kellogg and Osborn [1975]). f:f
2) Discretization of (11.38) and Assessment of the Accuracy of pee.
3 the Approximate Eigenpairs N
. As in Subsection B. above, our discretization will be via ;%t
._' ..
p Y
~ (11.4). For our specific problem, a mixed method for the associ- O
- ated source problem has been studied by Glowinski [1973], Ciarlet :E‘
and Raviart (1974]), Mercier [1974], and Falk and Osborn [1980]}. ﬂ?;
+ . - .
¢ We will use the same trial and test spaces employed in those ey
“ papers. 5:;
i .-“I
< TN
v Let y = (tr} = (Th} be a family of a-regular, g-quasiuniform o
-\--'
'j triangulations of Q. Then for p=2,3,..., let ?ﬁ
7
= Py. -
. (11.39a) Vp = ST (Ty) S
’ .-.f-
" o
, 191 he
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and

- <P 1
(11.39b) Wh = SO(Th) n HO(Q).

We then consider (11.4) with these choices. We will have approxi-

mate eigenvalues and eigenfunctions

ll,h < ... % lN,h

and
Cyn%,n o OnnPN,n
where N = dim (thwh).

Theorem 11.4. Let V and W be as in (11.39) with p 2 2 .and

h h
suppose the eigenfunctions of (11.36) belong to Hp+1(Q). Then

_ ) 2p-2

(11.40) M p = Al = C(p)h

and

(11.41) Ia - ul < c({p)hP.
"YUk, h k'0,0

Proof. The symmetry of A and the validity of (11.1) and (11.2)
for problem (11.38) have already been noted.

The source problem (11.6) is uniquely solvable for each g ¢

G = HO(Q). The unique solution is (o,u), where
A2u =g
u e HZ(0)
and
o = -Au
(cf. the derivation of (11.38)). The unique solvability of (11.7)

is easily checked.
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Falk.and Osborn [1980, Section 3a] have shown that

ITg - T chliT

1]
.0 * 9°3,0-

This, together with the regularity result mentioned above, gives

2
(T = T gy o s Chllighy 4.

which proves (11.9)
Thus, all of the hypotheses for Theorems 11.1 and 11.2 have
been verified for the problem under consideration. Using the

results in Falk and Osborn [1980, Section 3a], we have

- p-1
1(S=S)glly o s ChP HITgl ) o

- p-2
It (S Sh)gHI'Q < Ch HTng+1’Q.

- P
h(T Th)gllolQ < Ch¥liTgll

pr1,Q’
and
- < chPy
HT-Ty gl o < ChTITG ) o
from which we obtain
(11.42a) h(s-s )| _i 4 o < chP1,
M HE(Q),H (Q)
(11.42b) h(s=s) ]I , s cnP?,
M H (Q),H (Q)
(11.42c) I (T-T )|_ o o < chP,
M H (0),H (Q)
and
- 1 P
(11.424) HT=T ) | _4 4 1 s Ch".

M H™(Q),Hy(Q)

(11.40) follows immediately from Theorem 11.1 and (11.42), and

(11.41) follows from Theorem 11.2 and (11.42c).
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Remark 11.4. The estimates obtained in this subsection were first

obtained by Canuto [1978]. We note, however, that the estimation
techniques used here will yield an improvement over the estimates
of Canuto in the case when the eigenfunctions have low regularity.
Our method of proof does not yield any estimates for p = 1. For
this case, see Ishihara [1978 a,b].

3) Solution of Matrix Eigenvalue Problem

See subsection A.3) above.

For further results in eigenvalue approximation by mixed
methods, and also by hybrid methods, we refer to Mercier, Osborn,
Rappaz, and Raviart [1981], Mercier and Rappaz [1978], and

Ishihara [1977].

Remark 11.5. We have seen in this Section and in Section 11 that

there are various methods available for the approximate calcula-
tion of the eigenvalues of a specific problem. For example, we
have analyzed two methods for the membrane problem. Furthermore,
this discussion, together with that in Section 3, shows that there
are many more possibilities. Clearly the rational choice of a
method for any particular concrete problem is important. The

effective choice of a method is complex, depending on many aspects

of the underlying problem.

D. A Mixed Method for a Problem in One Dimension with Rough C

o

o

Hh
|

ficients

Consider the problem

(~(a(x)u’)’ = Ab(x)u, 0 < x < 1
(11.43)
u(0) = u(1) = 0.
194

- .w L ] I e - e L VR e "R SR T TR T R -\ _'- > e N ‘\ \-‘w .‘. .‘. - ““. .\ “‘ “m .i_ - -‘_\‘.' " .»‘ a oA ~~"- - A o




A

“J

4 A ptogat pou p U v @b gl v Eob dod Gt jat ot Pov f% Bavaba: b U b obn gl gep gt a R A h 8 R Sab $ob Sol tab vab Vol and ‘Al tale el el g, dla Al Bie Sus Aiad A8 RS B0 Reb Aot

This is a special case of the problem (1.8), (1.9a) discussed in
Section 1. We will be especially interested here in the case in
which the coefficients a(x) and b(x) are rough functions. Such
problems arise in the analysis of the vibrations of structures with
rapidly varying material properties, of composite materials, for
example. In Section 3, we gave (11.43) the mixed formulation

(3.26) (or (3.27)). 1In this subsection we analyze a mixed method

based on (3.27).

Hence we consider the problem

-

(0,u) € L,(0,1)xH;(0,1),(c,u) = (0,0)
1 1
Pax - | updx=0,Vope L,(0,1)
(11.44) 4J 2
* 0 °0
Fl 1
- ov’ dx = —k{ buv dx, V v € Hé(o,l),
| ‘o 0
where a(x) 1is of bounded variation and b(x) is measurable and
0 < a0 < a(x) < al, 0 < b0 < b(x) < bl'
(11.44) is of the form (11.3) with
V =H = L2(0,1),
W= H(0,1)
o ! ’
1
G = L2(0,1), with (u,v)G = { buv dx,
0
1
= | ge
A(le) - J a dxr
0
and
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1
B(o,v) = -J ov' dx.
0

(A,{o,u)) 1is an eigenpair of (11.44) if and only if (A,u} is an

eigenpair of (11.43) and o = au’'. We discretize (11.44) by let-

M(T)

ting v = (Ti}i=1 be a mesh on [0,1], defining

(11.45a) Vh = (o : UIT = a constant, i =1,...,M(t)}}
i
and
(11.45b) Wh = (v : v € Hé(O,l), v|T = a linear polynomial,
i
i=1,...,M(7)},
with h = h(tr) = max diam Ti‘ and considering (11.4).

i=1,...,M(7)
The eigenpairs (lh,(oh,uh)) of (11.4) are then considered as
approximations to the eigenpairs (A,(o,u)) of (11.44). Although
this approximation method satisfies the hypotheses of Theorem
11.1, a direct application of that result does not yield the best
possible estimate. We will employ an analysis that is parallel
to, but different than, that used in the proof of Theorem 11.1.

The analysis begins by introducing the operators T,Th : G—G

and S,Sh : G—V that are defined in (11.8). A is an eigenvalue

of (11.44) if and only if l—l is an eigenvalue of T; the cor-

respondence between the eigen(unctions is given by (0,u)e—u.

Likewise lh is an eigenvalue of (11.4) if and only if y 1 is

h
an eigenvalue of Th, with the correspondence between eigentfunc-

tions given by (oh,uh)e—au

h* HT—ThuGG—ao, as will be shown
later, so we may apply Theorem 7.2 to T and Th on the space
G. Let 1\~ be an eigenvalue of T. The eigenvalues of a prob-

lem of the type (11.43) are simple and hence x'l is a simple
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eigenvalue of T. Thus one eigenvalue lh of (11.4) converges to

P A
ek

A. By Theorem 7.2 we have

r.r,
Y

2
(11.46) 1A - A < C{I((T-Th)u,u)Gl + N(T—Th)uhG}.

hI )

L4

£l LAl
5’

where u 1is any eigenfunction of T corresponding to

o,

rtpe

Hu“G = 1. We now proceed to analyze ((T—Th),u)G.

“r ¥
-

I
M

From (11.6) we have

i e S

'/
o

1
((T—Th)u,u)G J bu(T—Th)u dx
0
{(11.47) —B(Su,(T—Th)u)

y

S —
‘-"s,y.
4

.

A vAS

Jay

4 S S

A(Su,(S-Sh)u) + B(((S-Sh)u,Tu) - B(Su,(T-Th)u),

¥

2 'l"?'
»

>
]

and from (11.6) and (11.7) we get

i
\ ST

o,

(11.48) 0 = A((S-S )u,f) + B((S-Sy)u.,n) + B(X,(T-Ty)u),

(B}

vVneW £E € V

A

h' h’

'y

%
~
~
~
~

S
t
¢
+

Combining (11.47) and (11.48) we get

A
S

((T-Th)u,u)G = A((S—Sh)u,Su+E) + B((S—Sh)u,Tu+n)

.". ',f
N

F IR
Ats e
AN

v

+ B(E—Su,(T—Th)u),

¢ .
.

v Wh, E eV

“ r

h'

which, letting n = —Thu and ¢ = S, u, vyields

h

((T-Tp)u,u)g = A({S-Sp)u, (S+Sp)u)
{11.49)
= 2A((S-Sh)u,Su)—A((S—Sh)u,(S-Sh)u).

Now, again using (11.6) and (11.7) we get
a((S—Sh)u,Su) = —B((S—Sh)u,Tu)

= -B((S-S, )u,Tu - }, (Tu)),
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where ZhTu is the wh—interpolant of Tu, and hence,

1

J SpulTu - ZhTu]dx =0
0

S

hY
[

o,
h )

and (11.6) we have

v,
[#

(11.50) A((S-S )u,Su) = -B(Su,Tu - J, Tu)
1

J bu{Tu - ZhTu]dx.
0

S
A AL
:‘-":‘- x

s
~§%5

ORI AN T

Finally, combining (11.49) and (11.50) we get

1
(11.51) ((T-Th)u,u)G = ZJ bu[Tu - ZhTu]dx
0

dx

1 2
_ I(S-Sh)ul
a

0
1

= 2A-1 J bu(u - Zhu)dx
0

s,

YV
N

L R A

dx.

5 %
PN

) 1|(s-sh)u|2
a

0

e rd
o
/,

-~ 3

Now, using (11.50) and (11.46) we get

’a

-

il L

1

-1 ‘
A = A s C{IJ bu(u - 3 u)dx| + a, n(s—sh)uiL2
0

s
.
L

.
»
P
3

oyt

2 .
+ H(T—Th)uszu}.

It remains to estimate the three terms on the right side of

(11.52).

Recall that Ehu is the W -interpolant of u. By a result

G4

5..
LaLN

of Prosdorf and Schmidt [1981] we know that

A

s,
4% S
P AR

@ Vs
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2.1
g - ¥ ull ’
(11.53) ha “hu"Ll s Chv,(u),

where Vé(u’) denotes the variation of u'. Recall that u is
an eigenfunction of (11.43) with MuHG = 1. Since a(x) is of

bounded variation, u will be of bounded variation; in fact

(11.54) vé(uw < c,

1 1
where C = C(ao,al,bo,bl,vo(a),l) depends on aO'al'bO'bl’vo(a)'

and 1. Also

(11.55) falt o < C.
L

Using Holders inequality, together with (11.53) - (11.55), we get

1
(11.56) |J bu(u - 3 u)dx|
0

IA

ffbulf _llu - Zhun 1
L

a4

L

< chv(a),

1
where C C(ao,al,bo,bl,vo(a),k).

Next we consider H(S-Sh)ullL2 and H(T-Th)u;iL2

seen that the results in Falk and Osborn [1980] imply

It is easily

N(S- Il (T- i
(11.57) (S Sh)uMLz, (T Th)u“Lz < C(ao,al,bo,bl,l)h-

Note that (11.57) shows that nT—ThuGG—eO.

Finally, combining (11.52), (11.56), and (11.57) we have

Theorem 11.5. Suppose A is an eigenvalue of (11.43) (or of

(11.44)) and let Ah be an the approximate eigenvalue defined by

11.4 with Vh and wh defined by (11.45). Then

. 1 2
(11.58) A - lhl < C(ao.al,bo,b ,Vo(a).l)h .

1

199

AN

'g' A" ':l
h

s

ey

P
P

[ g "..("f.‘f‘.f\l‘
Ay
SRV N NAY

AR
v » e 4
A RN

“x
"
P

(’:
>‘
ate Yo b

]
vy

Ld
ﬁ.

%

‘
s

At

o
Pl
A 4y Ny

()
P

N




EOA AL G S A A Ot LA Al A et R AN s ke i oMyt d ath A gl W

L]
o
[ W

“a
{‘.
»

4

" l:"'
g :,."'a' s 'l
Ay

- -

.
(A

The striking feature of estimate (11.58) 135 that the constant

T P
1
P

5N

C depends on the bounds ao,al,bo, and b1 and on Vé(a), but

U

is otherwise independent of a(x) and b{x). This shows that the

oy
K,
A

.

%
h )

approximation method is effective for problems with rough coeffi-

o
\(‘n

B
‘ )

cients (cf. discussion of alternate variational formulations at the

."’

end of Section 3). In fact, the rate of convergence indicated by

(11.58) is the same as that for the usual Ritz method for problems

- Y T ey rryve a4 sl ————— T T s T Al

with smooth coefficients. (11.58) was proved by Banerjee [1987]. )
The use of mixed methods for eigenvalue approximation for problems ZEE
with rough coefficients was first suggested by Nemat-Nasser [1972a, ;géé
1972b, 1974]. Rate of convergence estimates for several such mixed Jﬁt'
e
method were derived by Babuska and Osborn (1978]. :: Kf
3 <
Remark 11.6. It is of interest to note that the variable v, can 5;;;
be eliminated from 11.4 in the present context (i.e., with the (l;ﬂ:
choices for V,W,H,G,A,B,V,, and W_ we have made in this sub- %ﬁ;%:
section) leading to the problem g?&i
Up € Wp o
(11.59) M _ 1 By
Z J aTuljlv’dx = Ay { buhv dx, V v € W \f-:*_;
i=1 'I‘1 o) -
[ - =
7.2 RO
where a_ is a step function with arlTi = HTE%‘T; , 1= ;ﬁzi
1,...,M(7). Thus (11.59) differs from the usual Ritz method only ?i§§
e
in that the coefficient enters the calculation through its harmo- igﬁy
nic averages over the subintervals of the mesh instead of through ;ft

¢

its averages.

‘4,
'f’} ".

Vo
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R
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Section 12. Methods Based on One Parameter Families of Varia-

tional Formulations

In our treatment of the membrane problem in Subsection 10.B.,

S

the trial and test functions satisfied the essential boundary con-

" s " e s
F;'. e

dition u =0 (cf. (10.42)). In fact, if one bases the approxima-

!
B
S

tion method on the usual variational formulation (10.39), one must
impose the boundary condition on the trial and test functions.

To avoid this, methods have been developed that use test and trial
functions that are not required to satisfy essential boundary con-
ditioans. (See the discussion of essential and natural boundary
conditions in Section 3.) In this section we discuss two such-
methods. They are both based on one parameter family of variation-
al formulations. We will be rather brief and will not explicitly

discuss each of the steps 1), 1), 2), and 3) of finite element

approximation outlined in Section 10.

A. The Least Squares Method

Consider, as in Subsections 10.B. and 12.B., the membrane

problam
-Au = Au in Q

(12.1)
u=0 on I = 380,

where Q 1is a bounded, open set with boundary [, which, for the
sake of simplicity, we assume to be of class C®. Note that we are

not assuming Q to be a polygon. (12.1) has eigenvalues

and eigenfunctions

201
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We begin by introducing the least squares method for the cor- '{ftﬂ‘
A
o
responding source problen, b
)
X o
-Aw = £ in 0 AR
(12.2) A AL
w =0 on T, :-':‘J':r
-~ 'J‘-‘\
:f.-. ."\
which is usually given the variational formulation (sea= Remark 12.1 T
s
l- ’~
for the reason for using complex functions here), iﬁ%d{
s
Lo O
We H_(Q i
Y DS
_— )
(12.3) J VweVv dxdy = [ fv dxdy, V v € Hé(Q). o~
Q Q v
We now give (12.2) a different variational formulation. w solves Cf“'
) -
(12.2) if and only if P!
L
‘ AANEEAY
we H2(Q) S

l.{l

1]

(12.4) WJ AwAv dxdy + pJ wv dxdy = —J fAv dxdy,
r Q

L VveHZ(Q),VO<h<1,

where p = Py 2 1 is a parameter that approaches ~x» as h-——0.

To pass from (12.2) to (12.4) is immediate. To go from (12.4) to

(12.2) we proceed as follows. First take v € HZ(Q) to satisfty

Av = Aw + £ in Q

v =0 on T.

This chioce for v in (12.4) yields -Aw = f in Q. The equa-

tion in (12.4) then becomes

pl we dx = 0, V v - HZ(Q),

,
'\jx"ﬁ?
<y

RS

2
elble]
O L
T
i i : < a T
which implies w =0 on I, In (12.4) the boundary conditions N
IR j.-:'
T _\“:'.
MR RN
CalC o o
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W =0 1is not explicitly imposed. This is the major advantage of
the formulation (12.4) over (12.3) for our purposes. We note that
w can also be characterized by an extremal property: the solu-

tion w of (12.4) is the unigque minimizer of the functional

|

In order to discretize (12.4) we suppose we have a family

-Av - £]2 dxdy + p[ Ivi2ds

Q r

over Vv € H2(Q).

= {r} = {v,} of triangulations of @, where Q' is some fixed

rectangle containing Q. Then let

_ oPb.2 - 2, 0y . =
Sh =S (Th) = {u e H°(Q') : ulT a polynomial of

dogree p, V T € 1h}
and let Sh consist of the restrictioné of functions in Sp'z(Th)
to Q. The family Sh satisfies the following approximation

result: If p > 5, then

2
(12.5) inf Zhjllv—.tilj o < chtilvllt
*<5h j=o

o for 2 < t < p+1.
See Ciarlet [1978] for a proof of (12.5). Then we define an

approximate solution Wy to w by letting Wy be the unique

solution to

wh € Sh
(12.6)

[ AwhAv dxdy + p[ whv ds = —J f Av dxdy, V v = Sh'
Q

r Q
W is called the least squares approximation to w since it can

be alternately characterized as the unique minimizer of
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|

over Vv € Sh' Bramble and Schatz [1970] proposed and analyzed

|-Av - £|2dxdy + p]lvlzds
Q

this method for p =p, = h™3. The also showed p = h 3 to be
the optimal choice for p.
Now we return to the eigenvalue problem (12.1). Proceeding

in a similar way we see that (12.1) has the variational formula-
tion

u e H2(Q)

(12.7) [

(12.7) is then discretized by

Au Av dxdy + p[ uv ds

—AJ Av dxdy, V v € HZ(Q).
Q r

Q

lh complex, 0 » u, € Sh

(12.8) _ _
J AuhAv dxdy + pJ uv ds

—lh[ uhAv dxdy, V v € S
Q r

Q

h

(12.8) has eigenpairs (lj,h'uj,h)' j=1,...,N, where N = dim Sh'

If for f € HO(Q) we define Tf w and Thf = W where

w and wh are defined by (12.2) (or (12.4)) and (12.6), respec-

tively, then we easily see that (A,u) is an eigenpair of (12.1)
if and only if (u = l-l,u) is an eigenpair of T and (\h,uh)
is an eigenpair of (12.8) if and only if (“h = x_l,uh) is an

eigenpair of Th' We will estimate the error in (uh,uh), and
thus in (lh,uh), by applying the results in Section 7. T and
Th are clearly compact on HO(Q). We will show HT-Th”—AO in

the next paragraph.

o]
In order to apply Theorem 7.3 on H (0) we need estimates for
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s
B’
* ,':\.
- (- il Ih (= Ji ; A
((T Th)u,u), T Th)u"O,Q' and (T Th )u,,o'Q, where u is an :‘::_:'_
ALY
eigenfunction of (12.1) corresponding to the eigenvalue 1 {or u) N
-
we are approximating. These estimates are all contained in Bramble ::.-'."_':'.
A
and Schatz [1970] (and also in Baker [1973]) for the choice p = Py
T
h™3. In their Corollary 4.1 take 7 = 3/2, \ = t-2, g = 0, € = :
'\7:‘
-s, and r = p+1 to get aT
NN
_ s+t R
I ((T Th)¢.lp)0'Q| < Ch l!¢llt_2’Q|!st'Q, for e
(12.9) PN
0 < 8 < p-3, 2 < t < p+1l. R
RN
Taking s = 0 and t = 2 in (12.9) shows that :IT—Tth——ﬁo. Now :"-:\{
e
take s = p-3 and t = p+l1 to obtain ',':'_’-:"
(12.10) | ((T-T,)0.6), o] < Ch?P™3qy i i
* h'*'"’0,Q' ° p-1,0"" "p-3,0" A
o
]
take s = 0 and t = p+1 to obtain .:'.;:{'_',
-— p+1 ‘ :.v:\-
FO(T Th)¢.w)o’0l < Ch Il¢llp_1'Qllwho'Q. ;-:Z‘
\‘:\':
and hence A
PO
- | P+l 4 .
(12.11) (T Th)¢)l.o'0 < Ch II¢.Ip_1IQ. .
\l:\.:
S
and take s = p-3 and t = 2 to obtain N
\"_s'
| ((T-Ty 6. %)y ol = 1(&,(T-T, )w), oI < chP™lyeq  wuy R
h'®%lg,0 ‘ h'Yo,0! * "lo,0" ¥ p-3,0" i
and hence ".?f'_:_f:
(12.12) H(T-T,, Je)i < chP ™ Yypy S
) h ¥ 0,0 - w p~3,Q' .-:‘._-;‘
_"ff
Theorem 12.1. Suppose the approximate eigenpairs (lj h'uj h) are A
defined by (12.8) with p = h_a and suppose the eigenfunctions of S
(12.1) belong to HP™1(Q). Then -
AR
_ 2p-2 RN
(12.13) My p = Al = Ch R
i
05 !\J“‘...!
2
%
DAY -.
e L A A Y A e S P LN BN



and :‘E\:‘\
PN
(12.14) hu, 4 - uglly o ¢ Pt ool
5y
Proof. Let lk be any eigenvalue of (12.1) and suppose its geo- :&f\
LSS )
. . . . N RO
metric multiplicity is q, i.e., the geometric multiplicity of :&’ v
Hy = 11:1 is q. Since T is selfadjoint, the ascent is one and o
the algebraic multiplicity of My is also gq. g of the lj h ;j:::f-,:
’ ey

will converge to A, . Let 1 be one of them. Theorem 7.3 can ey
k k,h RO

now be applied and (12.13) follows directly from (7.15) and (12.10) e
e

- (12.12) since all of the eigenfunctions of (12.1) corresponding ;_\::":'_'.
S

to A, belong to Hp_l(()). (12.14) follows from Theorems 7.1 and :::i:',’-
. LAY

7.4 and (12.11). 4 “iee
hEBAR

'.':':--_‘

Remark 12.1. Even though (12.1) is selfadjoint, (12.8) is a non- LR
'.'_\._j.

selfadjoint (finite dimensinal) problem. Thus one needs the gene- ,,\":
ral (not necessarily selfadjoint) theory in Section 7 to analyze "-‘I
-:‘:-.‘.".
the least squares method. The nonselfadjointness of (12.8) is the '."\‘_
reason we have used complex function spaces in this analysis. '\jsj
RESCSS
B. The Penalty Method ROAYY
We will once more consider the membrane eigenvalue problem }:"_:_‘;

.:’\'__\
(10.38) and assume the boundary ' of Q 1is of class c®  (cf. A
MO A

also (12.1)). 1In Section 10 we gave this problem the variational
formulation }i:::.',:
: R

u € Ho(Q) :--:"
(12.15) . a}:‘_
a{u,v) = Ab(u,v), VvV v € HO(Q), :.':-:f
Pl

s

where 0
(12.16a) a(u,v) = } Vvu-Vv dxdy _:,.\:._\.
0 A l

.'..\---

-."'.-
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“ghl gkl ava ath JGR ob d - - U > gy oS

e
R
Pl
)
Nt
and NN
2.}
b '
(12.16b) b(u,v) = uv dxdy.
Q A
N AL
O
Let us replace the boundary condition uwu =0 on I in Zfli
N
- F \l
(10.38) by u + » lg% = 0, i.e., let us consider the problem Aot s
-Au = Au in @ o
(12.17) -
-1 du _ o
u + yp an - 0 on T, oy
where yp = Py 2 1 is a parameter that approaches +» as h— 0. %&f
Ty
It is easily seen that (12.17) has the variational form :??:
RO,
ue Hi(Q) T
a,(u,v) = ab(u,v), Vv e H(Q), ets
where iﬁzé
RN,
A 1
(12.19) a (u,v) = Vu-Vu dxdy + »} uv ds. -
L' Sl
Q Q K :::
ey
Note that in (12.18), in contrast to (12.15), we have not imposed %Ff:
[ 4 \‘;
any constraint on either u or v. This is the case since ‘h"‘
O
u+w-lg% = 0 is a natural boundary condition (cf. Section 3). ﬁﬁf
We now estimate the error between the eigenvalues and eigen- ;ﬁqi
':':’“.r
vectors of (12.15) and (12.18). Toward this end consider the cor- -
responding source problems: fﬁ;:
)
-Augy = f in 0 o
(12.20)
u=0 on T
and
-Au = f in Q
2.
et we vt o o0 g
'] an = on . —
SN
‘- ‘u
We view (12.21) as an approximation to (12.20). Denoting by u {}iﬁ
0 L-.‘_\."’
e
OO
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(respectively uw) the solution of (12.20) (respectively (12.21)),

we are interested in estimating uw - u,. [t is shown in Babuska

o
and Aziz {1973, Section 7.2] that

(12.22) u =u, -y £ +10,

where ¥ is the solution of the problem
-AE + ¢ =0 in Q
{(12.23) auo
¢ =5 n @

and [ is the solution to

r e H(Q)
(12.24)

aw(t.v) = w—la(E.V). Vve Hl(Q)-

From (12.16), (12.19), and (12.24) we have

v Lia(e,0)

2
Heh < a (§ §)
HI(Q) L4

-1
= v el e

H™(Q) H (Q)

and hence

(12.25) I S T
H(Q) H™(Q)
From (12.23) and (12.25) we obtain
-1
(12.26) fa. - a.j < 2% g .
p 0 Hl(Q) HI(Q)

From (12.23) and regularity results for elliptic boundary value

problems we get

(12.27) et s Clgil o .
H (Q) H'(Q)

Combining (12.26) and (12.27) yields

208

R Rt e e AT e Nt g AT T e et TR L el T L A N L S RN W
RN e o e g e e e e b s N e A R
AT AL A Y ) A 3 n 3 A

T

~a -
L
*. 3

S

. .
o

I

s

"

£

A

R U
P
AT

[

W

7oA

“yh

VAT YOy \}\-

W

.

"'
P
A S

oy |
NN

, 0, G s

o
>

, N

L4

e Y
NIt

.E\l"'f vl

Y
o

hY
2

[

&

'~.- '. ‘-; a
AR 2

[N
2 _"‘." l" wN

i -
N
lﬂ‘

Z,

g

*y
»

2

7

it
%

fl 'I'-:l{' b}

z

S
(.ff.

I3

R A A

g4

M
P T U

v

]
o

’ '4. by
5

~

S
.

o 20'S

",
b

)

s
2

L

‘; ‘l" ‘ ";'l’f P

L
s 'r Ve

)
L



T Y WS O s

T

NN / ,'.-_‘r."(\;?r"f f\(.'-f.vr,‘l"lx"l\(qf_;::;!‘ g

. N Y TS da' . fa* Yy 0086 kad 'a 8t 8% e ba phe” ‘ol al A eal 0od 3 0 680

-1
(12.28) la - u| < cp Yyfl
a4 0 ulg) u%(0)

If we now introduce the operators T and Tv on HO(Q) by

Tf = u0
and
T f =nu,
4
then (12.28) implies that
-1
(12.29) I (T-T, )£l s Cp " £ .
p HO(Q) 0,Q

It is immediate that (A ,u) is an eigenpair of (12.15) if an only
if (u = l-l,u) is an eigenpair of T; likewise (lw,uw) is'an
eigenpair of (12.18) if and only if K, = (l;l,uw) is an eigen-

pair of Tw. It thus follows immediately from Theorems 7.1 - 7.4

and (12.29) that

-1
12.30 A, = A .| s C
( ) IJ w'Jl v
and
-1
(12.31) ta, - s Cp —,

u I
J v, ] HI(Q)

where (2 ,uj) and (lw 3’ uw j) denote the eigenpairs of

3
(12.15) and (12.18), respectively. Note that (12.30) and (12.31)
are estimates of the same order for both the eigenvalue and eigen-
vector errors. This is in contrast to approximations we have ana-
lyzed previously in this article. An analysis of a one-dimensicnal
model problem shows that, for the type of approximations we are
considering, the eigenvalue and eigenvector error is, indeed, of

the same order.

Next we consider the problem (12.18) and approximate it by a
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finite element method, letting the resulting eigenpairs be

A } ) .
( w,j,h'uw,j,h) Since u and v in (12.18) are taken in

HI(Q), we need not impose any boundary condition on the trial and ?-“
test space Sh' If one now analyzes the error in the finite ele- b
ment approximation of (12.18), selects ®» so that the error in e
passing from (12.15) to (12.18) is of the same magnitude of that

incurred in the finite element approximation of (12.18), and then

combines the error estimates (12.30) and (12.31) with those for

SR

the finit element approximations of (12.18), one obtains esti- Sﬁij
\.:_-:,\

LASAS

mates for the difference between (lj,uj) and (Aw.j,h'uw,j,h)' E&;M
o

We stress that the (A, ,.u, 4 ) are calculated from a matrix ey
'.(; .J‘_‘.-

eigenvalue problem corresponding to trial and test spaces that are ;ft;
'.'.".r:“-

s

not required to satisfy the essential boundary condition for the

membrane problem (12.1). The approximation method we have out- o
lined is referred to as the penalty method. §§§
We refer the reader to Babuska and Aziz [1973, Section 7.2] ﬁé&
for a detailed analysis of the penalty method for the source prob- phn“
lem. Estimates for the errors in eigenvalue approximation can be izs;
easily derived from the corresponding source problem estimates by éééz
means of Theorems 7.1 - 7.4. Because this application of these ~
error estimates to the eigenvalue problem is similar to those dis- E?g‘
cussed above and raises no new issues, we will not give a formal E;ﬁ
statement of the results. ‘f;i
nIR
Remark 12.2. If Q is a polygon, then the choice ¢y = ® corres- %E%t
ponds to satisfying the boundary condition on 8Q, i.e., con- %fF
straining Sp(r) to be sg(r), and the resulting method is iden- ;;::
tical with that discussed in the Subsection 10.B. If [ is not Esf:
LRSS,
N
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polygonal, then » = ® will lead to the constraint SP(r) = §8(T), "_::.'J',
. e
where Sg(r) consists of those u € Sp('r) which are zero on every
.
triangle which intersects . The finite element solution then .:-‘:.j-ﬁj-
ey
solves the problem on Q instead of Q, where Q consists of ,\-i:
r\a_:.r )
the union of all triangles which do not intersect . Sometimes ahis
~ v N
the mesh is constructed so that Q - Q is as small as possible by "::ﬁ
RSN
A E
interpolating I’ by straight lines. ’.\_::‘_:
AT
Remark 12.3. 1In practical computation (codes) the penalty method TN
e
(or some equivalent method) is often also used when Q 1is a poly- o ::{::-
RO
gon by taking » to be very large (say » = 108). This is just ::'::::;::-
. "I 3
a way of imposing the essential boundary conditions in the code. P
Remark 12.4. The least squares method and penalty method are
seldom used as a way to treat essential boundary conditions on a .l\';-“"'
curved boundary because of the difficulty in the computation of s
--.\.FS
TN
alp(u,v), which requires area integrations over triangles which --j:-:f\
‘..J‘ ._\
YGRS
intersect the boundary. The usual approach is to use curvilinear ; ",1-,\'\
elements, which allow exact satisfaction of the boundary condition P
in a similar way as when the domain is polygonal (cf. Remark 12.3). :’
AT
Let us end this section by noting some similarities and dif- LA
ferences in the least squares and penalty methods. ‘
* Both methods circumvent essential boundary conditions by :-:j:jl"~
reformulating the original problem in terms of a one para- ':;":.'
meter family of variational formulations. 1In both methods, "'
the optimal value of the parameter depends on the mesh, g :j.:- .
i.e., on h. S
* With the least squares method, the optimal value of the 'f-
AN
- RAAE
parameter (p = h ) 1is independent of the solution. ."‘
:_-.‘;\ -
et
211 e
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This is related to the fact that the alternate variational ja?
formulation characterizes the solution exactly for any =
value of the parameter. In the case of the penalty gf
method, the optimal value of the parameter depends on the Ei

mesh and the smocthness of the solution or the eigenfunc-

l‘ '. i- 'I.)'J'

et
0
Pe o
Py

tion. This is related to the fact that the exact solution
does not exactly satisfy the one parameter family of for-

mulations for any value of the parameter p = +m,

N
AT

+ The least squares method employs Cl—elements (i.e., sub-

Pl il

spaces of H2(Q)), whereas the penalty method employs

NNEAN
IS

g
P

Co—elements (i.e., subspaces of Hl(Q)). As we have pre-

s ‘o
AN
¥ i

viously noted, Co—elements are easier to construct than

. e
.o, s
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Section 13. Concluding Remarks

A. We have illustrated the application of the general theory that
was presented in Chapter II by considering several important model
problems. It should be clear from the analysis of these model
problems how to treat a wide variety of problems. We have seen,
however, that the application of the general theory to a concrete

problem may require subtle analysis.

B. In Sections 10, 11, and 12 we have illustrated the main
approach to finite element approximation of eigenvalue problems.
We have seen that there are many available methods and that thgir
basic theoretical properties can be established as an application
of the results in Chapter II. Nevertheless, the implementation of
these methods raises many other important questions; although we
cannot address these questions in detail, we now mention some of
then.

1) Which method is most effective for a specific problem?
What is the goal of the computation? We remark that sometimes high
accuracy 1is achieved for eigenvalue approximation, but that only
low accuracy is obtained for the approximation of other important
guantities such as the stresses, moments, or shear forces.

2) What types of meshes or adaptive mesh procedures are

desirable? How should the gquality of the computed results be

assessed a posteriori? For a survey of results in this direction,
see Noor and Babuéka (1987].

3) Which matrix eigenvalue solvers should be used? What
computer architecture is desirable (sequential, parallel)?

These questions are, of course, not restricted to eigenvalue
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computation. They also arise with finite element computation of
source problems. Some of these gquestions may be addressed in

other articles in this Handbook.

C. The Ritz method, which was discussed in Section 10, is most
easily analyzed with the results of Section 8, specifically with
(8.44) - (8.46). Note that because of (8.32), (8.11) is satisfied
with # = a and thus the major requirement on Sh is that it
have ygood approximation properties.

D. We have seen in Remark 11.2 that mixed methods for eigenvalue
approximation have the form of (8.10) and (8.14). Thus, if a
method satisfies the hypotheses of Section 8, specifically (B.i),
(8.2), (8.3), (8.6), (8.11), and (8.13), then the method can also
be analyzed with the results of Section 8. Most mixed methods,
however, fail to satisfy at least one of these hypotheses, and we
thus cannot rely on the results of Section 8. We now comment on
two of the examples discussed in Section 11 in regard to which
results in Chapter II their analysis is based on.

1) Consider first the mixed method discussed in Subsection
11.A. for the membrane problem. It is easily seen that the varia-
tional formulation (11.24) satisfies (8.1), (8.2), and (8.3), but
that it does not satisfy (8.6). In Section 8, assumption (8.6) is
used to show that the operator T defined by (8.8) is compact.

For our example, for (f,g) € H(div,o)vHO(Q),

T(f,g) = (o,u),

where u solves
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and ¢ = Vu, and, by noting in particular the dependence of o

on g, we see that T H(div,Q)~HO(Q)——»H(div,Q)~HO(Q) is not

compact. Since T is not compact, T as defined by (8.16),

h’
cannot converge to T in norm. Because of these facts, the
results of Section 7 do not apply (to this T). The analysis that
we used for this problem (cf. Theorem 11.1) is based on Section 7
and circumvents this difficulty by using a different operator,
namely T : H2(0)—H%(0) defined by Tg = u (cf. 11.8c).

As mentioned in Remark 7.7, results for noncompact operators
which parallel those in Section 7 have been proved by Descloux,
Nassif, and Rappaz [1978a, 1978b)], and one can, if fact, use thenm
to derive the estimates we obtained in Subsection 11.B, specifi-
cally (11.32) and (11.33). We will not present the details of

this analysis but will comment ‘riefly on the applicability of the

results of Descloux, Nassif, and Rappaz [1978a, 1978b] to our prob-

lem.

For their results, T is not required to be compact and Th

is assumed to converge to T in the sense that

(13.1)
inf I (o, u)-(r.n)i—0 for each (v,u) ¢ H(div,0) -HOru:
(I.U)€Sh=Vh-wh
and
(13.2)
T, =Tl = sup (T, ~T)(f,g)! -0,
h "'h (£,9)eV, ~W_ h H(div,0)-H°(Q)
H(f,g)¥ 0
With Vh and wh defined as in (11.31), (13.1) follows from the
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approximation result in Raviart and Thomas [1977].

We now verify (13.2), which is central point in any applica-
tion of the results of Descloux, Nassif, and Rappaz [1978a,
1987b)}. For (f,g) e thwh, let (o,u) = T(f,g) and (ch,uh)

Th(f,g), where T and T are defined by (8.8) and (8.16),

h
respectively, for the problem discussed in Subsection 11.B. We
know that u € Hl(Q), -Au = g, and o = Vu, and hence div o =
g. Also, if g = wh it is easily seen that div ah = -g. Thus

(T, ~T) (£,9)! 1 (o -(o,u)!

h,uh)

H(div,0)~H%(Q) H(div,0)~H°(Q)
= [Hdiv oh—dlv ouo o * Hoh—awz
Ho(Q)
, 2 1/2
. I -k
(13.3) + Luh u'O,Q)}
[ 2 1/2
= |lo, -cil + fu,_-ull ] '
h MO(Q) h 0,Q
for (f,g) = Vit W
From the results in Falk and Osborn [{1980] we have
Il e 2l < dfal
Hoh otm ©) Ch,u‘.z’Q
(13.4a)
< Hegh
Chigiy o
and
iu, —ul < Ch2”uH
““h 770,00 K 2,Q
{13.4b)
< Ch ligh 0.0°
Combining (13.3) and (13.4) we get
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H(div,0)xH°(Q)

(13.95)

A

Chil(f,g)l 0 /
H(div,Q)-H (Q)

for (f,g) € thwh.

(13.2) follows directly from (13.5).

. 2) Consider next the method discussed in Subsection 11.C for
the vibrating plate problem. The variational formulation (11.38)
for the problem does not satisfy (8.2) and (8.11). Note that the

method was analyzed by means of Theorem 11.1 which is based on

Theorem 7.3

Remark 13.1. The fact that many mixed approximation methods fail

to satisfy the usual hypotheses (cf. Babuska [1971, 1973] and
Brezzi [1974]) for variational approximation methods is an issue
for the approximation of source problems as well as eigenvalue
problems. The abstract results in Falk and Osborn [1980] have as
their main application the analysis of mixed methods which fail to
satisfy the usual hypotheses for variational approximation methods.
In this connection see also Babuéka, Osborn, and Pitkaranta (1980],
where problem (11.38) is reformulated in terms of alternate spaces
with alternate (mesh dependent) norms so as to satisfy the usual

hypotheses.
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E\ The Laboratory for Numerical analysis is an integral part of the ::f
N Institute for Physical Science and Technology of the University of Maryland, A
under the general administration of the Director, Institute for Physical :;
! Science and Technology. It has the following goals: =
8
o To conduct research in the mathematical theory and computational ~
. implementation of numerical analysis and related topics, with emphasis o
& on the numerical treatment of linear and nonlinear differential equa- "
/ tions and problems in linear and nonlinear algebra. -
F o To help bridge gaps between computational directions in engineering,
™ physics, etc., and those in the mathematical community. >
&+
N o To provide a limited consulting service in all areas of numerical ::;
E‘:. mathematics to the University as a whole, and also to government o
agencies and industries in the State of Maryland and the Washington %
e Metropolitan area. -
o o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
::, Mathematics Program and the programs of the Mathematics and Computer o
E Science Departments. This includes active collaboration with govern- e
ment agencies such as the National Bureau of Standards. f’f
. .’
t o To be an international center of study and research for foreign -
’ students in numerical mathematics who are supported by foreign govern- >3
ments or exchange agencies (Fulbright, etc.) ;
. Further information may be obtained from Professor I. BabuSka, Chairman, v
Laboratory for Numerical Analysis, Institute for Physical Science and i
6 Technology, University of Maryland, College Park, Maryland 20742. =
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